Page 57 - 中国全科医学2022-18
P. 57

·2230· http://www.chinagp.net   E-mail:zgqkyx@chinagp.net.cn


               papillomavirus prevalence in 5 continents:meta-analysis of 1 million   cnki.cjcor.2020.02.02.
               women with normal cytological findings[J]. J Infect Dis,2010,  [15]李双,李明珠,丛青,等 . 人乳头瘤病毒疫苗临床应用中国专
               202(12):1789-1799. DOI:10.1086/657321.               家共识[J]. 中国妇产科临床杂志,2021,22(2):225-234.
           [11]ZHU B,LIU Y,ZUO T,et al. The prevalence,trends,and   DOI:10.13390/j.issn.1672-1861.2021.02.045.
               geographical distribution of human papillomavirus infection in   LI S,LI M Z,CONG Q,et al. Chinese expert consensus on
               China:the pooled analysis of 1.7 million women[J]. Cancer   clinical application of human papillomavirus vaccine[J]. Chin J
               Med,2019,8(11):5373-5385. DOI:10.1002/cam4.2017.     Clin Obstet Gynecol,2021,22(2):225-234. DOI:10.13390/
           [12]中国医师协会全科医师分会,北京妇产学会社区与基层分会 .                         j.issn.1672-1861.2021.02.045.
                                                               [16]高维娇,高雨农 . 宫颈癌筛查中人乳头状瘤病毒检测现状[J].
               更年期妇女健康管理专家共识(基层版)[J].中国全科医
                                                                    肿瘤综合治疗电子杂志,2021,7(3):47-50.
               学,2021,24(11):1317-1324. DOI:10.12114/j.issn.1007-
                                                                    GAO W J,GAO Y N. The status of human Papilloma virus test
               9572.2021.00.402.
                                                                    in cervical cancer screening[J]. J Multidiscip Cancer Manag:
               Chinese  Medical  Doctor  Association  (CMDA)'s  General
                                                                    Electron Version,2021,7(3):47-50.
               Practitioners Sub-association,The Primary Care Branch of
                                                               [17]中国医师协会全科医师分会,北京妇产学会社区与基层分会 .
               Beijing Institute of Obstetrics & Gynecology. Consensus on health
                                                                    宫颈癌筛查结果异常人群社区管理专家建议[J]. 中国全科医
               management in climacteric women in primary medical institutions
                                                                    学,2021,24(17):2117-2121,2126. DOI:10.12114/j.issn.
               edition[J].Chinese General Practice,2021,24(11):
                                                                    1007-9572.2021.00.531.
               1317-1324. DOI:10.12114/j.issn.1007-9572.2021.00.402.
                                                                    Chinese  Medical  Doctor  Association(CMDA)'s  General
           [13]BRUNI  L,ALBERO  G,SERRANO  B,et  al.  ICO/IARC
                                                                    Practitioners Sub-association,the Primary Care Branch of Beijing
               Information Centre on HPV and Cancer (HPV Information
                                                                    Institute of Obstetrics & Gynecology.Expert recommendations on
               Centre).  Human  Papillomavirus  and  Related  Diseases  in   community-based management of women with abnormal cervical
               China[EB/OL]. (2019-06-17)[2020-11-25]. https://hpvcentre.  cancer screening test results[J]. Chinese General Practice,
               net/ statistics/reports/CHN.pdf?t = 1606722464904.   2021,24(17):2117-2121,2126.  DOI:10.12114/
           [14]韦梦娜,余艳琴,徐慧芳,等 . 中国大陆地区不同宫颈病变人                        j.issn.1007-9572.2021.00.531.
               群中人乳头瘤病毒感染率及型别分布的系统研究[J]. 中国                               (收稿日期:2021-12-10;修回日期:2022-01-10)
               肿瘤临床与康复,2020,27(2):133-137. DOI:10.13455/j.                                     (本文编辑:毛亚敏)


           (上接第 2222 页)                                             from[18F]-fluorodeoxyglucose positron emission tomography/
           [40]NITHYA B,ILANGO V. Evaluation of machine learning based   computed tomography[J]. SSRN Journal,2019,29(12):
               optimized feature selection approaches and classification methods for   6741-6749. DOI:10.2139/ssrn.3292576.
               cervical cancer prediction[J]. SN Appl Sci,2019,1(6):1-16.   [46]PERGIALIOTIS V,POULIAKIS A,PARTHENIS C,et al. The
               DOI:10.1007/s42452-019-0645-7.                       utility of artificial neural networks and classification and regression
           [41]WANG T,GAO T T,YANG J B,et al. Preoperative prediction of   trees for the prediction of endometrial cancer in postmenopausal
               pelvic lymph nodes metastasis in early-stage cervical cancer using
                                                                    women[J]. Public Health,2018,164:1-6. DOI:10.1016/j.
               radiomics nomogram developed based on T2-weighted MRI and
                                                                    puhe.2018.07.012.
               diffusion-weighted imaging[J]. Eur J Radiol,2019,114:128-
                                                               [47]ARAMENDÍA-VIDAURRETA V,CABEZA R,VILLANUEVA
               135. DOI:10.1016/j.ejrad.2019.01.003.
                                                                    A,et al. Ultrasound image discrimination between benign and
           [42]MATSUO K,PURUSHOTHAM S,MOEINI A,et al. A pilot study
                                                                    malignant adnexal masses based on a neural network approach[J].
               in using deep learning to predict limited life expectancy in women
                                                                    Ultrasound Med Biol,2016,42(3):742-752. DOI:10.1016/j.
               with recurrent cervical cancer[J]. Am J Obstet Gynecol,2017,
                                                                    ultrasmedbio.2015.11.014.
               217(6):703-705. DOI:10.1016/j.ajog.2017.08.012.
                                                               [48]ACHARYA  U  R,SREE  S  V,KULSHRESHTHA  S,et  al.
           [43]MATSUO K,PURUSHOTHAM S,JIANG B,et al. Survival
                                                                    GyneScan:an improved online paradigm for screening of ovarian
               outcome prediction in cervical cancer:Cox models vs deep-learning
                                                                    cancer via tissue characterization[J]. Technol Cancer Res
               model[J]. Am J Obstet Gynecol,2019,220(4):381.e1-
                                                                    Treat,2014,13(6):529-539. DOI:10.7785/tcrtexpre
               381.e4. DOI:10.1016/j.ajog.2018.12.030.
                                                                    ss.2013.600273.
           [44]AKAZAWA  M,HASHIMOTO  K.  Artificial  intelligence  in
               gynecologic cancers:current status and future challenges——a   [49]ZHANG L,HUANG J,LIU L. Improved deep learning network
               systematic review[J]. Artif Intell Med,2021,120:102164.   based in combination with cost-sensitive learning for early detection
               DOI:10.1016/j.artmed.2021.102164.                    of ovarian cancer in color ultrasound detecting system[J]. J Med
           [45]SHEN  W  C,CHEN  S  W,WU  K  C,et  al.  Prediction  of   Syst,2019,43(8):251. DOI:10.1007/s10916-019-1356-8.
               local relapse and distant metastasis in patients with definitive   (收稿日期:2022-01-25;修回日期:2022-03-01)
               chemoradiotherapy-treated cervical cancer by deep learning                      (本文编辑:赵跃翠)
   52   53   54   55   56   57   58   59   60   61   62