Page 39 - 2023-01-中国全科医学
P. 39

·34·   http: //www.chinagp.net   E-mail: zgqkyx@chinagp.net.cn                     January  2023, Vol.26  No.1


                                                                                                  • 论著 •


           1990—2019 年中国女性乳腺癌发病及死亡趋势的

           年龄 - 时期 - 队列模型分析


           刘雪薇,王媛,韦丹梅,芦文丽                *                                                     扫描二维码
                                                                                               查看原文

               【摘要】 背景 乳腺癌位居全球女性癌因死亡首位,具有发病率高、疾病负担重等特点。目的 评估 1990—
           2019 年中国女性乳腺癌发病率及死亡率的流行变化趋势。方法 提取《2019 年全球疾病负担》数据库中 1990—2019
           年中国≥ 15 岁女性乳腺癌发病及死亡数据,应用年龄 - 时期 - 队列的贝叶斯模型对中国 1990—2019 年女性乳腺癌
           发病及死亡趋势进行拟合,进一步估计中国女性乳腺癌发病及死亡风险中的年龄效应、时期效应和队列效应。结果
           1990—2019 年中国女性乳腺癌粗发病率从 14.14/10 万升至 52.81/10 万,粗死亡率从 7.22/10 万升至 13.40/10 万。乳腺
           癌标化发病率总体呈上升趋势(1990 年为 17.07/10 万,2019 年为 35.61/10 万),标化死亡率呈平稳略减趋势(1990
           年为 9.16/10 万,2019 年为 8.98/10 万)。年龄 - 时期 - 队列模型分析结果显示:所有年龄组女性乳腺癌发病率净漂移
           值为 2.58%〔95%CI(2.34%,2.83%)〕,局部漂移值在 65~69 岁年龄段达到最高,为 3.46%〔95%CI(3.11%,3.80%)〕;
           死亡率净漂移值为 -0.75%〔95%CI(-1.09%,-0.41%)〕,局部漂移值在 15~44 岁呈平稳趋势,且约 60 岁之后局部
           漂移值 >0;年龄效应中乳腺癌发病和死亡风险随着年龄增长而增加;以 2000—2004 年为参考时期,发病风险的时期
           效应总体呈上升趋势(RR 值为 0.79~1.47),死亡风险的时期效应总体呈下降趋势(RR 值为 1.08~0.90);以 1955—
           1959 年为对照组,乳腺癌发病风险的队列效应总体上有所升高(RR 值为 0.27~2.48),乳腺癌死亡风险的队列效应呈
           先增(RR 值为 0.78~1.06)后降趋势(RR 值为 1.06~0.44)。结论 中国女性 1990—2019 年乳腺癌发病率和死亡率均
           呈持续上升趋势,乳腺癌发病和死亡风险的年龄效应和队列效应占主导地位。
               【关键词】 乳腺肿瘤;疾病负担;发病率;死亡率;年龄 - 时期 - 队列模型
               【中图分类号】 R 737.9 【文献标识码】 A DOI:10.12114/j.issn.1007-9572.2022.0619
               刘雪薇,王媛,韦丹梅,等 . 1990—2019 年中国女性乳腺癌发病及死亡趋势的年龄 - 时期 - 队列模型分析[J].
           中国全科医学,2023,26(1):34-41.[www.chinagp.net]
               LIU X W,WANG Y,WEI D M,et al. Age-period-cohort analysis of trends of breast cancer incidence and mortality
           among Chinese females from 1990 to 2019[J]. Chinese General Practice,2023,26(1):34-41.


           Age-Period-Cohort Analysis of Trends of Breast Cancer Incidence and Mortality among Chinese Females from 1990 to
           2019 LIU Xuewei,WANG Yuan,WEI Danmei,LU Wenli *
           Department of Epidemiology and Health Statistics,School of Public Health,Tianjin Medical University,Tianjin 300070,China
           *
           Corresponding author:LU Wenli,Professor,Doctoral supervisor;E-mail:luwenli@tmu.edu.cn
               【Abstract】 Background Breast cancer is the leading cause of death among women worldwide,characterized by high
           incidence and heavy disease burden. Objective To assess the secular trend of breast cancer incidence and mortality in Chinese
           females from 1990 to 2019. Methods The data on breast cancer incidence and mortality in Chinese females aged  ≥ 15 years
           from 1990 to 2019 were extracted from the Global Burden of Disease Study 2019. The Bayesian age-period-cohort(APC) model
           was used to fit breast cancer incidence and mortality trends during 1990—2019 to assess the effects of age,period and cohort
           on breast cancer incidence and mortality. Results The crude incidence of breast cancer among Chinese females increased from
           14.14/100 000 to 52.81/100 000,and the crude mortality increased from 7.22/100 000 to 13.40/100 000 during 1990—2019.
           The standardized incidence of breast cancer showed an increasing trend in general(17.07/100 000 in 1990,35.61/100 000 in
           2019),while the standardized breast cancer mortality was basically stable(9.16/100 000 in 1990,8.98/100 000 in 2019).
           The results of the APC model showed that the average net drift value of breast cancer incidence in females of all age groups was
           2.58%〔95%CI(2.34%,2.83%)〕,and the highest value of local drift was 3.46%〔95%CI(3.11%,3.80%)〕 in the


               基金项目:国家自然科学基金资助项目(72074166)——基于系统动力学和 Hopfield 神经网络模型的社区乳腺癌筛查策略研究
               300070 天津市,天津医科大学公共卫生学院流行病与卫生统计学系
               *
               通信作者:芦文丽,教授,博士生导师;E-mail:luwenli@tmu.edu.cn
               本文数字出版日期:2022-10-28
   34   35   36   37   38   39   40   41   42   43   44