Page 49 - 中国全科医学2022-18
P. 49

·2222· http://www.chinagp.net   E-mail:zgqkyx@chinagp.net.cn


               facilitated by an artificial intelligence microscope:a preliminary   [28]赵宇倩 . 适合中国不同资源地区的宫颈癌筛查技术及阴道镜检
               study[J]. Cancer Cytopathol,2021,129(9):693-700.     查中组织学活检的探讨[D]. 北京:北京协和医学院,2016.
               DOI:10.1002/cncy.22425.                         [29]王娜,王悦 . 人工智能在子宫颈癌筛查中的应用[J]. 中华妇
           [16]WENTZENSEN N,LAHRMANN B,CLARKE M A,et al. Accuracy   产科杂志,2020,55(11):4. DOI:10.3760/cma.j.cn112141-
               and efficiency of deep-learning-based automation of dual stain   20200405-00299.
               cytology in cervical cancer screening[J]. J Natl Cancer Inst,  [30]SATO M,HORIE K,HARA A,et al. Application of deep learning
               2021,113(1):72-79. DOI:10.1093/jnci/djaa066.         to the classification of images from colposcopy[J]. Oncol Lett,
           [17]ZHU X H,LI X M,ONG K,et al. Hybrid AI-assistive diagnostic   2018:15(3):3518-3523. DOI:10.3892/ol.2018.7762.
               model permits rapid TBS classification of cervical liquid-based thin-  [31]HU L,BELL D,ANTANI S,et al. An observational study of deep
               layer cell smears[J]. Nat Commun,2021,12(1):3541.    learning and automated evaluation of cervical images for cancer
               DOI:10.1038/s41467-021-23913-3.                      screening[J]. J Natl Cancer Inst,2019,111(9):923-932.
           [18]LI X,XU Z H,SHEN X,et al. Detection of cervical cancer cells   DOI:10.1093/jnci/djy225.
               in whole slide images using deformable and global context aware   [32]MIYAGI Y,TAKEHARA K,MIYAKE T. Application of deep
               faster RCNN-FPN[J]. Curr Oncol,2021,28(5):3585-      learning to the classification of uterine cervical squamous epithelial
               3601. DOI:10.3390/curroncol28050307.                 lesion from colposcopy images[J]. Mol Clin Oncol,2019,11(6):
           [19]SENKOMAGO V,ROYALTY J,MILLER J W,et al. Cervical     583-589. DOI:10.3892/mco.2019.1932.
                                                               [33]MIYAGI Y,TAKEHARA K,NAGAYASU Y,et al. Application
               cancer screening in the National Breast and Cervical Cancer Early
                                                                    of deep learning to the classification of uterine cervical squamous
               Detection Program (NBCCEDP) in four US-Affiliated Pacific
                                                                    epithelial lesion from colposcopy images combined with HPV
               Islands between 2007 and 2015[J]. Cancer Epidemiol,2017,
                                                                    types[J]. Oncol Lett,2020,19(2):1602-1610. DOI:
               50:260-267. DOI:10.1016/j.canep.2017.04.011.
                                                                    10.3892/ol.2019.11214.
           [20]DEVI M A,RAVI S,VAISHNAVI J,et al. Classification
                                                               [34]CHO B J,CHOI Y J,LEE M J,et al. Classification of cervical
               of  cervical  cancer  using  artificial  neural  networks[J].
                                                                    neoplasms on colposcopic photography using deep learning[J].
               Procedia Comput Sci,2016,89:465-472. DOI:10.1016/j.
                                                                    Sci Rep,2020,10(1):13652. DOI:10.1038/s41598-020-
               procs.2016.06.105.
                                                                    70490-4.
           [21]THRALL M J. Automated screening of Papanicolaou tests:a review
                                                               [35]薛鹏,乔友林,江宇 . 人工智能在医学内窥镜诊断中的应用[J].
               of the literature[J]. Diagn Cytopathol,2019,47(1):20-27.
                                                                    中华肿瘤杂志,2018,40(12):890-893. DOI:10.3760/cma.
               DOI:10.1002/dc.23931.
                                                                    j.issn.0253-3766.2018.12.003.
           [22]RENSHAW A A,HOLLADAY E B,GEILS K B. Results of
                                                                    XUE P,QIAO Y L,JIANG Y. Application of artificial intelligence
               multiple-slide,blinded review of Papanicolaou slides in the
                                                                    in diagnosis of medical endoscope[J]. Chinese Journal of
               context of litigation. Determining what can be detected regularly
                                                                    Oncology,2018,40(12):890-893. DOI:10.3760/cma.
               and reliably[J]. Cancer,2005,105(5):263-269. DOI:
                                                                    j.issn.0253-3766.2018.12.003.
               10.1002/cncr.21319.
                                                               [36]XUE P,TANG C,LI Q,et al. Development and validation of an
           [23]DOORNEWAARD H,VAN DEN TWEEL J G,JONES H W,
                                                                    artificial intelligence system for grading colposcopic impressions and
               3rd. Applications of automation in cervical cancer screening[J].
                                                                    guiding biopsies[J]. BMC Med,2020,18(1):406. DOI:
               J  Low  Genit  Tract  Dis,1998,2(1):19-24.  DOI:
                                                                    10.1186/s12916-020-01860-y.
               10.1097/00128360-199801000-00005.
                                                               [37]LIU L,WANG Y,LIU X L,et al. Computer-aided diagnostic
           [24]中国病理医师协会数字病理与人工智能病理学组,中华医学会
                                                                    system  based  on  deep  learning  for  classifying  colposcopy
               病理学分会数字病理与人工智能工作委员会,中华医学会病理
                                                                    images[J]. Ann Transl Med,2021,9(13):1045. DOI:
               学分会细胞病理学组 . 宫颈液基细胞学的数字病理图像采集与
                                                                    10.21037/atm-21-885.
               图像质量控制中国专家共识[J]. 中华病理学杂志,2021,50
                                                               [38]薛鹏,唐朝,乔友林,等 . 人工智能电子阴道镜辅助诊断系统
               (4):4. DOI:10.3760/cma.j.cn112151-20210111-00028.
                                                                    对宫颈癌筛查的现实挑战和未来机遇[J]. 中国肿瘤,2019,
           [25]OGILVIE G,NAKISIGE C,HUH W K,et al. Optimizing
                                                                    28(7):483-486. DOI:10.11735/j.issn.1004-0242.2019.07.
               secondary prevention of cervical cancer:recent advances and future
                                                                    A001.
               challenges[J]. Int J Gynaecol Obstet,2017,138(Suppl 1):
                                                                    XUE P,TANG C,QIAO Y L,et al. Artificial intelligence
               15-19. DOI:10.1002/ijgo.12187.
                                                                    electronic colposcopy assisted diagnosis system for cervical cancer
           [26]XUE P,NG M T A,QIAO Y L. The challenges of colposcopy
                                                                    screening:challenge and prospective[J]. China Cancer,2019,
               for cervical cancer screening in LMICs and solutions by artificial
                                                                    28(7):483-486. DOI:10.11735/j.issn.1004-0242.2019.07.
               intelligence[J].  BMC  Med,2020,18:169.  DOI:        A001.
               10.1186/s12916-020-01613-x.                     [39]SOUMYA K,SNEHA K,ARUNVINODH C. Cervical cancer
           [27]赵昀,魏丽惠 . 我国阴道镜技术培训何去何从[J]. 中国妇产                      detection and classification using texture analysis[J]. Biomed
               科临床杂志,2019,20(1):1-2. DOI:10.13390/j.issn.1672-      Pharmacol J,2016,9(2):663-671. DOI:10.13005/bpj/988.
               1861.2019.01.001.                                                                  (下转第2230页)
   44   45   46   47   48   49   50   51   52   53   54