Page 75 - 中国全科医学2022-17
P. 75
·2120· http://www.chinagp.net E-mail:zgqkyx@chinagp.net.cn
CAO M K,JIANG J,ZHU X L,et al. Artificial intelligence- FAN W J,ZHANG D. New concepts of imaging omics and deep
assisted diagnosis and treatment system in prediction of benign or learning in differential diagnosis of benign and malignant pulmonary
malignant lung nodules and infiltration degree[J]. Chinese Journal nodules[J]. Chinese Journal of Lung Diseases:Electronic
of Clinical Thoracic and Cardiovascular Surgery,2021,28(3): Edition,2021,14(5):549-553.
283-287. [19]张晓菊 .《肺结节诊治中国专家共识(2018 版)》解读[J].
[9]尹泚,毛文杰,李斌,等 . 人工智能系统在肺结节检出及良恶 中华实用诊断与治疗杂志,2019,33(1):1-3.
性鉴别中的应用研究[J]. 中华胸心血管外科杂志,2020,36(9): ZHANG X J. Interpretation of Chinese expert consensus on diagnosis
553-556. DOI:10.3760/cma.j.cn112434-20200817-00375. and treatment of pulmonary nodules(2018 edition)[J]. Chinese
YIN C,MAO W J,LI B,et al. Study on the application of artificial Journal of Practical Diagnosis & Therapy,2019,33(1):1-3.
intelligence system in the detection and differentiation of benign and [20]蔡雅倩,张正华,韩丹,等 . AI 对肺磨玻璃结节筛查及定性的
malignant pulmonary nodules[J]. Chinese Journal of Thoracic 临床应用研究[J]. 放射学实践,2019,34(9):958-962.
and Cardiovascular Surgery,2020,36(9):553-556. DOI: DOI:10.13609/j.cnki.1000-0313.2019.09.005.
10.3760/cma.j.cn112434-20200817-00375. CAI Y Q,ZHANG Z H,HAN D,et al. A clinical study of AI
[10]BIANCHI J,RUELLAS A,PRIETO J C,et al. Decision support on the detection and classification of pulmonary ground glass
systems in temporomandibular joint osteoarthritis:a review of data nodules[J]. Radiologic Practice,2019,34(9):958-962.
science and artificial intelligence applications[J]. Seminars in DOI:10.13609/j.cnki.1000-0313.2019.09.005.
Orthodontics,2021,27(2):78-86. [21]LIN Y H,HSU H S. Ground glass opacity on chest CT
[11]中华医学会放射学分会心胸学组 . 低剂量螺旋 CT 肺癌筛查专
scans from screening to treatment:a literature review[J].
家共识[J]. 中华放射学杂志,2015,9(5):328-335.
J Chin Med Assoc,2020,83(10):887-890. DOI:
Chinese Medical Association Radiology Society Cardiothoracic
10.1097/JCMA.0000000000000394.
Group.Review of low-dose spiral CT screening for lung cancer [J].
[22]张正华,周小君,韩丹,等 . 基于 AI 对磨玻璃密度早期肺癌浸
Chinese journal of radiology,2015,9(5):328-335.
润相关因素 Logistic 回归分析[J]. 临床放射学杂志,2020,
[12]GODOY M C B,ODISIO E G L C,TRUONG M T,et al.
39(10):2120-2123. DOI:10.13437/j.cnki.jcr.2020.10.045.
Pulmonary nodule management in lung cancer screening:a pictorial
ZHANG Z H,ZHOU X J,HAN D,et al. Clinical study
review of lung-rads version 1.0[J]. Radiol Clin North Am,
on quantitative learning artificial intelligence to quantify the
2018,56(3):353-363.
malignant degree of ground glass nodules[J]. Journal of Clinical
[13]RODRIGUEZ-RUIZ A,LÅNG K,GUBERN-MERIDA A,
Radiology,2020,39(10):2120-2123. DOI:10.13437/j.cnki.
et al. Stand-alone artificial intelligence for breast cancer detection
jcr.2020.10.045.
in mammography:comparison with 101 radiologists[J]. J Natl
[23]王璐,洪群英 . 肺结节诊治中国专家共识(2018 年版)解
Cancer Inst,2019,111(9):916-922. DOI:10.1093/jnci/
读[J]. 中国实用内科杂志,2019,39(5):440-442. DOI:
djy222.
10.19538/j.nk2019050111.
[14]KAPOOR R,WALTERS S P,AL-ASWAD L A. The Current
WANG L,HONG Q Y. Interpretation of Chinese expert consensus
state of artificial intelligence in ophthalmology[J]. Surv
on the diagnosis and treatment of pulmonary nodules(2018
Ophthalmol,2019,64(2):233-240. DOI:10.1016/j.
version)[J]. Chinese Journal of Practical Internal Medicine,
survophthal.2018.09.002.
2019,39(5):440-442. DOI:10.19538/j.nk2019050111.
[15]李甜,李晓东,刘敬禹 . 人工智能辅助诊断肺结节的临床价
[24]LOVERDOS K,FOTIADIS A,KONTOGIANNI C,et al.
值研究[J]. 中国全科医学,2020,23(7):828-831,836.
Lung nodules:a comprehensive review on current approach and
DOI:10.12114/j.issn.1007-9572.2020.00.052.
management[J]. Ann Thorac Med,2019,14(4):226-238.
LI T,LI X D,LIU J Y. Clinical value of artificial intelligence in the
DOI:10.4103/atm.ATM_110_19.
diagnosis of pulmonary nodules[J]. Chinese General Practice,
[25]ATHER S,KADIR T,GLEESON F. Artificial intelligence and
2020,23(7):828-831,836. DOI:10.12114/j.issn.1007-
radiomics in pulmonary nodule management:current status and
9572.2020.00.052.
future applications[J]. Clin Radiol,2020,75(1):13-19.
[16]QI L L,WU B T,TANG W,et al. Long-term follow-up of
DOI:10.1016/j.crad.2019.04.017.
persistent pulmonary pure ground-glass nodules with deep learning-
[26]张世佳,赵静,任胜祥,等 . 生物标记物应用于肺癌早期诊断
assisted nodule segmentation. [J]. Eur Radiol,2020,30(2):
和筛查研究进展[J]. 中华健康管理学杂志,2017,11(4):
744-755. DOI:10.1007/s00330-019-06344-z.
383-387. DOI:10.3760/cma.j.issn.1674-0815.2017.04.018.
[17]NASRULLAH N,SANG J,ALAM M S,et al. Automated lung
nodule detection and classification using deep learning combined ZHANG S J,ZHAO J,REN S X,et al. Biomarkers in early
with multiple strategies[J]. Sensors (Basel),2019,19(17): diagnosis and screening of lung cancer[J]. Chin J health
3722. DOI:10.3390/s19173722. management,2017,11(4):383-387. DOI:10.3760/cma.
[18]范卫杰,张冬 . 影像组学及深度学习在肺结节良恶性鉴别诊断 j.issn.1674-0815.2017.04.018.
中的新理念[J]. 中华肺部疾病杂志:电子版,2021,14(5): (收稿日期:2021-12-21;修回日期:2022-02-14)
549-553. (本文编辑:宋春梅)