Page 133 - 中国全科医学2022-01
P. 133

·258· http://www.chinagp.net   E-mail:zgqkyx@chinagp.net.cn


               of mentions of Adverse Drug Reactions from user comments[J].   6:27930. DOI:10.1038/srep27930.
               AMIA Annu Symp Proc,2011,2011:1019-1026.        [35]CHOWDHURY  A  S,KHALEDIAN  E,BROSCHAT  S  L.
           [23]PATKI  A,SARKER  A,PIMPALKHUTE  P,et  al.  Mining    Capreomycin resistance prediction in two species of Mycobacterium
               adverse drug reaction signals from social media:going beyond   using a stacked ensemble method[J]. J Appl Microbiol,2019,
               extraction[C]. BioLink-SIG,2014.                     127(6):1656-1664. DOI:10.1111/jam.14413.
           [24]JAMAL S,GOYAL S,SHANKER A,et al. Predicting neurological   [36]MANCINI A,VITO L,MARCELLI E,et al. Machine learning
               Adverse Drug Reactions based on biological,chemical and   models predicting multidrug resistant urinary tract infections using
               phenotypic properties of drugs using machine learning models[J].   “DsaaS”[J]. BMC Bioinformatics,2020,21(Suppl 10):
               Sci Rep,2017,7(1):1-12. DOI:10.1038/s41598-017-      347. DOI:10.1186/s12859-020-03566-7.
               00908-z.                                        [37]AN S,MALHOTRA K,DILLEY C,et al. Predicting drug-
           [25]HAMMANN F,SCHÖNING V,DREWE J. Prediction of clinically   resistant  epilepsy-A  machine  learning  approach  based  on
               relevant drug-induced liver injury from structure using machine   administrative claims data[J]. Epilepsy Behav,2018,89:
               learning[J]. J Appl Toxicol,2019,39(3):412-419. DOI:  118-125. DOI:10.1016/j.yebeh.2018.10.013.
               10.1002/jat.3741.                               [38]DORMAN S N,BARANOVA K,KNOLL J H,et al. Genomic
           [26]FENG C L,CHEN H W,YUAN X Q,et al. Gene expression data   signatures for paclitaxel and gemcitabine resistance in breast cancer
               based deep learning model for accurate prediction of drug-induced   derived by machine learning[J]. Mol Oncol,2016,10(1):
               liver injury in advance[J]. J Chem Inf Model,2019,59(7):  85-100. DOI:10.1016/j.molonc.2015.07.006.
               3240-3250. DOI:10.1021/acs.jcim.9b00143.        [39]CHENG F X,ZHAO Z M. Machine learning-based prediction
           [27]LAI  N  H,SHEN  W  C,LEE  C  N,et  al.  Comparison  of   of drug-drug interactions by integrating drug phenotypic,
               the predictive outcomes for anti-tuberculosis drug-induced   therapeutic,chemical,and genomic properties[J]. J Am
               hepatotoxicity by different machine learning techniques[J].   Med  Inform  Assoc,2014,21(e2):e278-286.  DOI:
               Comput Methods Programs Biomed,2020,188(2):105307.   10.1136/amiajnl-2013-002512.
               DOI:10.1016/j.cmpb.2019.105307.                 [40]KASTRIN A,FERK P,LESKOŠEK B. Predicting potential drug-
           [28]DAVAZDAHEMAMI  B,DELEN  D.  A  chronological         drug interactions on topological and semantic similarity features using
               pharmacovigilance network analytics approach for predicting adverse   statistical learning[J]. PLoS One,2018,13(5):e0196865.
               drug events[J]. J Am Med Inform Assoc,2018,25(10):   DOI:10.1371/journal.pone.0196865.
               1311-1321. DOI:10.1093/jamia/ocy097.            [41]RYU  J  Y,KIM  H  U,LEE  S  Y.  Deep  learning  improves
           [29]CHEKROUD A M,ZOTTI R J,SHEHZAD Z,et al. Cross-trial   prediction of drug-drug and drug-food interactions[J]. Proc
               prediction of treatment outcome in depression:a machine learning   Natl Acad Sci USA,2018,115(18):E4304-4311. DOI:
               approach[J]. Lancet Psychiatry,2016,3(3):243-250.    10.1073/pnas.1803294115.
               DOI:10.1016/S2215-0366(15)00471-X.              [42]TUCKER C S,BEHOORA I,NEMBHARD H B,et al. Machine
           [30]ATHREYA  A  P,NEAVIN  D,CARRILLO-ROA  T,et  al.      learning classification of medication adherence in patients
               Pharmacogenomics-driven prediction of antidepressant treatment   with movement disorders using non-wearable sensors[J].
               outcomes:a  machine-learning  approach  with  multi-trial   Comput  Biol  Med,2015,66:120-134.  DOI:10.1016/j.
               replication[J]. Clin Pharmacol Ther,2019,106(4):855-  compbiomed.2015.08.012.
               865. DOI:10.1002/cpt.1482.                      [43]MOHEBBI A,ARADÓTTIR T B,JOHANSEN A R,et al. A deep
           [31]SAKELLAROPOULOS T,VOUGAS K,NARANG S,et al.           learning approach to adherence detection for type 2 diabetics[J].
               A deep learning framework for predicting response to therapy in   Annu Int Conf IEEE Eng Med Biol Soc,2017,2017:2896-2899.
               cancer[J]. Cell Rep,2019,29(11):3367-3373.e4. DOI:   DOI:10.1109/EMBC.2017.8037462.
               10.1016/j.celrep.2019.11.017.                   [44]LI  Y,JASANI  F,SU  D,et  al.  Decoding  nonadherence
           [32]JIANG Y M,LIU W,LI T J,et al. Prognostic and predictive   to hypertensive medication in New York City:a population
               value of p21-activated kinase 6 associated support vector machine   segmentation  approach[J].  J  Prim  Care  Community
               classifier in gastric cancer treated by 5-fluorouracil/oxaliplatin   He a l t h,2019,10:2150132719829311.  DOI:
               chemotherapy[J]. EBioMedicine,2017,22:78-88. DOI:    10.1177/2150132719829311.
               10.1016/j.ebiom.2017.06.028.                    [45]WU X W,YANG H B,YUAN R,et al. Predictive models
           [33]MACESIC  N,POLUBRIAGINOF  F,TATONETTI  N  P.         of  medication  non-adherence  risks  of  patients  with  T2D
               Machine learning:novel bioinformatics approaches for combating   based  on  multiple  machine  learning  algorithms[J].  BMJ
               antimicrobial resistance[J]. Curr Opin Infect Dis,2017,30(6):  Open Diabetes Res Care,2020,8(1):e001055. DOI:
               511-517. DOI:10.1097/QCO.0000000000000406.           10.1136/bmjdrc-2019-001055.
           [34]DAVIS J J,BOISVERT S,BRETTIN T,et al. Antimicrobial        (收稿日期:2021-02-25;修回日期:2021-06-30)
               resistance prediction in PATRIC and RAST[J]. Sci Rep,2016,                      (本文编辑:李婷婷)
   128   129   130   131   132   133