Page 133 - 中国全科医学2022-01
P. 133
·258· http://www.chinagp.net E-mail:zgqkyx@chinagp.net.cn
of mentions of Adverse Drug Reactions from user comments[J]. 6:27930. DOI:10.1038/srep27930.
AMIA Annu Symp Proc,2011,2011:1019-1026. [35]CHOWDHURY A S,KHALEDIAN E,BROSCHAT S L.
[23]PATKI A,SARKER A,PIMPALKHUTE P,et al. Mining Capreomycin resistance prediction in two species of Mycobacterium
adverse drug reaction signals from social media:going beyond using a stacked ensemble method[J]. J Appl Microbiol,2019,
extraction[C]. BioLink-SIG,2014. 127(6):1656-1664. DOI:10.1111/jam.14413.
[24]JAMAL S,GOYAL S,SHANKER A,et al. Predicting neurological [36]MANCINI A,VITO L,MARCELLI E,et al. Machine learning
Adverse Drug Reactions based on biological,chemical and models predicting multidrug resistant urinary tract infections using
phenotypic properties of drugs using machine learning models[J]. “DsaaS”[J]. BMC Bioinformatics,2020,21(Suppl 10):
Sci Rep,2017,7(1):1-12. DOI:10.1038/s41598-017- 347. DOI:10.1186/s12859-020-03566-7.
00908-z. [37]AN S,MALHOTRA K,DILLEY C,et al. Predicting drug-
[25]HAMMANN F,SCHÖNING V,DREWE J. Prediction of clinically resistant epilepsy-A machine learning approach based on
relevant drug-induced liver injury from structure using machine administrative claims data[J]. Epilepsy Behav,2018,89:
learning[J]. J Appl Toxicol,2019,39(3):412-419. DOI: 118-125. DOI:10.1016/j.yebeh.2018.10.013.
10.1002/jat.3741. [38]DORMAN S N,BARANOVA K,KNOLL J H,et al. Genomic
[26]FENG C L,CHEN H W,YUAN X Q,et al. Gene expression data signatures for paclitaxel and gemcitabine resistance in breast cancer
based deep learning model for accurate prediction of drug-induced derived by machine learning[J]. Mol Oncol,2016,10(1):
liver injury in advance[J]. J Chem Inf Model,2019,59(7): 85-100. DOI:10.1016/j.molonc.2015.07.006.
3240-3250. DOI:10.1021/acs.jcim.9b00143. [39]CHENG F X,ZHAO Z M. Machine learning-based prediction
[27]LAI N H,SHEN W C,LEE C N,et al. Comparison of of drug-drug interactions by integrating drug phenotypic,
the predictive outcomes for anti-tuberculosis drug-induced therapeutic,chemical,and genomic properties[J]. J Am
hepatotoxicity by different machine learning techniques[J]. Med Inform Assoc,2014,21(e2):e278-286. DOI:
Comput Methods Programs Biomed,2020,188(2):105307. 10.1136/amiajnl-2013-002512.
DOI:10.1016/j.cmpb.2019.105307. [40]KASTRIN A,FERK P,LESKOŠEK B. Predicting potential drug-
[28]DAVAZDAHEMAMI B,DELEN D. A chronological drug interactions on topological and semantic similarity features using
pharmacovigilance network analytics approach for predicting adverse statistical learning[J]. PLoS One,2018,13(5):e0196865.
drug events[J]. J Am Med Inform Assoc,2018,25(10): DOI:10.1371/journal.pone.0196865.
1311-1321. DOI:10.1093/jamia/ocy097. [41]RYU J Y,KIM H U,LEE S Y. Deep learning improves
[29]CHEKROUD A M,ZOTTI R J,SHEHZAD Z,et al. Cross-trial prediction of drug-drug and drug-food interactions[J]. Proc
prediction of treatment outcome in depression:a machine learning Natl Acad Sci USA,2018,115(18):E4304-4311. DOI:
approach[J]. Lancet Psychiatry,2016,3(3):243-250. 10.1073/pnas.1803294115.
DOI:10.1016/S2215-0366(15)00471-X. [42]TUCKER C S,BEHOORA I,NEMBHARD H B,et al. Machine
[30]ATHREYA A P,NEAVIN D,CARRILLO-ROA T,et al. learning classification of medication adherence in patients
Pharmacogenomics-driven prediction of antidepressant treatment with movement disorders using non-wearable sensors[J].
outcomes:a machine-learning approach with multi-trial Comput Biol Med,2015,66:120-134. DOI:10.1016/j.
replication[J]. Clin Pharmacol Ther,2019,106(4):855- compbiomed.2015.08.012.
865. DOI:10.1002/cpt.1482. [43]MOHEBBI A,ARADÓTTIR T B,JOHANSEN A R,et al. A deep
[31]SAKELLAROPOULOS T,VOUGAS K,NARANG S,et al. learning approach to adherence detection for type 2 diabetics[J].
A deep learning framework for predicting response to therapy in Annu Int Conf IEEE Eng Med Biol Soc,2017,2017:2896-2899.
cancer[J]. Cell Rep,2019,29(11):3367-3373.e4. DOI: DOI:10.1109/EMBC.2017.8037462.
10.1016/j.celrep.2019.11.017. [44]LI Y,JASANI F,SU D,et al. Decoding nonadherence
[32]JIANG Y M,LIU W,LI T J,et al. Prognostic and predictive to hypertensive medication in New York City:a population
value of p21-activated kinase 6 associated support vector machine segmentation approach[J]. J Prim Care Community
classifier in gastric cancer treated by 5-fluorouracil/oxaliplatin He a l t h,2019,10:2150132719829311. DOI:
chemotherapy[J]. EBioMedicine,2017,22:78-88. DOI: 10.1177/2150132719829311.
10.1016/j.ebiom.2017.06.028. [45]WU X W,YANG H B,YUAN R,et al. Predictive models
[33]MACESIC N,POLUBRIAGINOF F,TATONETTI N P. of medication non-adherence risks of patients with T2D
Machine learning:novel bioinformatics approaches for combating based on multiple machine learning algorithms[J]. BMJ
antimicrobial resistance[J]. Curr Opin Infect Dis,2017,30(6): Open Diabetes Res Care,2020,8(1):e001055. DOI:
511-517. DOI:10.1097/QCO.0000000000000406. 10.1136/bmjdrc-2019-001055.
[34]DAVIS J J,BOISVERT S,BRETTIN T,et al. Antimicrobial (收稿日期:2021-02-25;修回日期:2021-06-30)
resistance prediction in PATRIC and RAST[J]. Sci Rep,2016, (本文编辑:李婷婷)