背景 全球范围内糖尿病足溃疡(DFUs)首次复发与再次复发率逐年上升,且早期复发风险高于远期风险。导致DFUs复发的风险因素较多,目前缺乏系统的筛选,因此需要探索DFUs复发的危险因素,以便早期识别复发高危人群。
目的 探讨Logistic回归、支持向量机(SVM)和BP神经网络(BPNN)模型在DFUs复发风险中的预测价值。
方法 选取2020年1月—2021年10月在宁夏医科大学总医院烧伤整形美容科、内分泌科和伤口造口门诊就诊的DFUs患者390例作为开发模型的研究对象。根据患者出院后1年内DFUs是否复发分为复发组116例(29.7%)和非复发组274例(70.3%)。收集两组患者的一般资料包括社会人口学特征、病史评估和临床病例资料并进行比较,采用糖尿病足部自我管理行为量表(DFSBS)评估患者糖尿病足部自我管理行为,采用慢性病风险感知问卷评估患者DFUs风险感知水平。采用多因素Logistic回归分析探讨DFUs患者出院后1年内DFUs复发的影响因素;将患者按照7∶3划分为训练集和测试集,运用Logistic回归变量筛选策略,分别建立Logistic回归、SVM和BPNN模型;绘制各模型预测DFUs复发风险的受试者工作特征(ROC)曲线。
结果 两组DFUs患者BMI、独居、糖尿病病程、吸烟史、饮酒史、受累足趾截肢史、足溃疡分级、踝肱指数、糖化血红蛋白、溃疡位置在脚底、足趾受累、足部存在行走障碍、骨髓炎、多重耐药菌感染、糖尿病周围神经病变、下肢动脉粥样硬化、足部自我管理行为、DFUs风险感知水平比较,差异均有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,BMI〔OR=0.394,95%CI(0.285,0.546),P<0.001〕、糖尿病病程〔OR=1.635,95%CI(1.303,2.051),P<0.001〕、吸烟史〔OR=0.186,95%CI(0.080,0.434),P<0.001〕、足溃疡分级〔OR=2.139,95%CI(1.133,4.038),P=0.019〕、糖化血红蛋白〔OR=2.289,95%CI(1.485,3.528),P<0.001〕、溃疡位置在脚底〔OR=3.148,95%CI(1.344,7.373),P=0.008〕、足部自我管理行为〔OR=0.744,95%CI(0.673,0.822),P<0.001〕和DFUs风险感知水平〔OR=0.892,95%CI(0.845,0.942),P<0.001〕是DFUs患者1年内DFUs复发的影响因素。Logistic回归、SVM和BPNN模型在测试集中预测DFUs复发风险的正确率分别82.43%、94.87%、87.17%,ROC曲线下面积(AUC)分别为0.843、0.937、0.820。Logistic回归、SVM和BPNN模型预测DFUs复发风险的ROC曲线AUC比较,差异有统计学意义(Z=2.741,P<0.05);SVM模型预测DFUs复发风险的ROC曲线AUC高于Logistic回归和BPNN模型(Z=5.937,P=0.013;Z=3.946,P<0.001)。
结论 SVM模型预测DFUs患者出院后1年内DFUs复发风险的正确率、灵敏度、特异度、AUC等指标均较好,为相对最优的模型,建议进一步推广应用以验证预测模型的效能。