[1] |
GBD Causes of Death Collaborators. Global,regional,and national age-sex-specific mortality for 282 causes of death in 195 countries and territories,1980-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159):1736-1788. DOI: 10.1016/S0140-6736(18)32203-7.
|
[2] |
CANFORA E E, MEEX R C R, VENEMA K,et al. Gut microbial metabolites in obesity,NAFLD and T2DM[J]. Nat Rev Endocrinol, 2019, 15(5):261-273. DOI: 10.1038/s41574-019-0156-z.
|
[3] |
VITALE M, GIACCO R, LAIOLA M,et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern:can SCFAs play a role?[J]. Clin Nutr, 2021, 40(2):428-437. DOI: 10.1016/j.clnu.2020.05.025.
|
[4] |
PALACIOS T, VITETTA L, COULSON S,et al. Targeting the intestinal microbiota to prevent type 2 diabetes and enhance the effect of metformin on glycaemia:a randomised controlled pilot study[J]. Nutrients, 2020, 12(7):2041. DOI: 10.3390/nu12072041.
|
[5] |
YADAV H, LEE J H, LLOYD J,et al. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion[J]. J Biol Chem, 2013, 288(35):25088-25097. DOI: 10.1074/jbc.M113.452516.
|
[6] |
HE J, ZHANG P W, SHEN L Y,et al. Short-chain fatty acids and their association with signalling pathways in inflammation,glucose and lipid metabolism[J]. Int J Mol Sci, 2020, 21(17):6356. DOI: 10.3390/ijms21176356.
|
[7] |
MACFARLANE G T, MACFARLANE S. Bacteria,colonic fermentation,and gastrointestinal health[J]. J AOAC Int, 2012, 95(1):50-60. DOI: 10.5740/jaoacint.sge_macfarlane.
|
[8] |
FREELAND K R, WILSON C, WOLEVER T M S. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects[J]. Br J Nutr, 2010, 103(1):82-90. DOI: 10.1017/S0007114509991462.
|
[9] |
TERAMAE H, YOSHIKAWA T, INOUE R,et al. The cellular expression of SMCT2 and its comparison with other transporters for monocarboxylates in the mouse digestive tract[J]. Biomed Res, 2010, 31(4):239-249. DOI: 10.2220/biomedres.31.239.
|
[10] |
BLOEMEN J G, VENEMA K, VAN DE POLL M C,et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery[J]. Clin Nutr, 2009, 28(6):657-661. DOI: 10.1016/j.clnu.2009.05.011.
|
[11] |
PARADA VENEGAS D, DE LA FUENTE M K, LANDSKRON G,et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10:277. DOI: 10.3389/fimmu.2019.00277.
|
[12] |
MATHEWSON N D, JENQ R, MATHEW A V,et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease[J]. Nat Immunol, 2016, 17(5):505-513. DOI: 10.1038/ni.3400.
|
[13] |
VADDER F D, KOVATCHEVA-DATCHARY P, GONCALVES D,et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1/2):84-96. DOI: 10.1016/j.cell.2013.12.016.
|
[14] |
BROWN A J, GOLDSWORTHY S M, BARNES A A,et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J]. J Biol Chem, 2003, 278(13):11312-11319. DOI: 10.1074/jbc.M211609200.
|
[15] |
POUL E L, LOISON C, STRUYF S,et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J]. J Biol Chem, 2003, 278(28):25481-25489. DOI: 10.1074/jbc.M301403200.
|
[16] |
FLOCK T, HAUSER A S, LUND N,et al. Selectivity determinants of GPCR-G-protein binding[J]. Nature, 2017, 545(7654):317-322. DOI: 10.1038/nature22070.
|
[17] |
HOUSLAY M D, MILLIGAN G. Tailoring cAMP-signalling responses through isoform multiplicity[J]. Trends Biochem Sci, 1997, 22(6):217-224. DOI: 10.1016/s0968-0004(97)01050-5.
|
[18] |
MILLIGAN G. G protein-coupled receptors not currently in the spotlight:free fatty acid receptor 2 and GPR35[J]. Br J Pharmacol, 2018, 175(13):2543-2553. DOI: 10.1111/bph.14042.
|
[19] |
KIMURA I, ICHIMURA A, OHUE-KITANO R,et al. Free fatty acid receptors in health and disease[J]. Physiol Rev, 2020, 100(1):171-210. DOI: 10.1152/physrev.00041.2018.
|
[20] |
TUNARU S, KERO J, SCHAUB A,et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect[J]. Nat Med, 2003, 9(3):352-355. DOI: 10.1038/nm824.
|
[21] |
OFFERMANNS S. Hydroxy-carboxylic acid receptor actions in metabolism[J]. Trends Endocrinol Metab, 2017, 28(3):227-236. DOI: 10.1016/j.tem.2016.11.007.
|
[22] |
KAYE D M, SHIHATA W A, JAMA H A,et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease[J]. Circulation, 2020, 141(17):1393-1403. DOI: 10.1161/CIRCULATIONAHA.119.043081.
|
[23] |
WANG N, GUO D Y, TIAN X,et al. Niacin receptor GPR109A inhibits insulin secretion and is down-regulated in type 2 diabetic islet beta-cells[J]. General & Comparative Endocrinology, 2016, 237:98-108. DOI: 10.1016/j.ygcen.2016.08.011.
|
[24] |
SUN M M, WU W, LIU Z J,et al. Microbiota metabolite short chain fatty acids,GPCR,and inflammatory bowel diseases[J]. J Gastroenterol, 2017, 52(1):1-8. DOI: 10.1007/s00535-016-1242-9.
|
[25] |
|
[26] |
JOHNSTONE R W. Histone-deacetylase inhibitors:novel drugs for the treatment of cancer[J]. Nat Rev Drug Discov, 2002, 1(4):287-299. DOI: 10.1038/nrd772.
|
[27] |
WALDECKER M, KAUTENBURGER T, DAUMANN H,et al. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon[J]. J Nutr Biochem, 2008, 19(9):587-593. DOI: 10.1016/j.jnutbio.2007.08.002.
|
[28] |
SOLIMAN M L, ROSENBERGER T A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression[J]. Mol Cell Biochem, 2011, 352(1/2):173-180. DOI: 10.1007/s11010-011-0751-3.
|
[29] |
MURPHY K G, BLOOM S R. Gut hormones and the regulation of energy homeostasis[J]. Nature, 2006, 444(7121):854-859. DOI: 10.1038/nature05484.
|
[30] |
FREELAND K R, WOLEVER T M S. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1,peptide YY,ghrelin,adiponectin and tumour necrosis factor-alpha[J]. Br J Nutr, 2010, 103(3):460-466. DOI: 10.1017/S0007114509991863.
|
[31] |
KAJI I, KARAKI S, KUWAHARA A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release[J]. Digestion, 2014, 89(1):31-36. DOI: 10.1159/000356211.
|
[32] |
BROOKS L, VIARDOT A, TSAKMAKI A,et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansiontoincrease satiety[J]. Mol Metab, 2017, 6(1):48-60. DOI: 10.1016/j.molmet.2016.10.011.
|
[33] |
TOLHURST G, HEFFRON H, LAM Y S,et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2):364-371. DOI: 10.2337/db11-1019.
|
[34] |
KRIEGER J P, ARNOLD M, PETTERSEN K G,et al. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia[J]. Diabetes, 2016, 65(1):34-43. DOI: 10.2337/db15-0973.
|
[35] |
ABBOTT C R, MONTEIRO M, SMALL C J,et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway[J]. Brain Res, 2005, 1044(1):127-131. DOI: 10.1016/j.brainres.2005.03.011.
|
[36] |
DELZENNE N,BLUNDELL J,BROUNS F,et al. Gastrointestinal targets of appetite regulation in humans[J]. Obes Rev,2010,11(3):234-50.
|
[37] |
DALAMAGA M,CHOU S H,SHIELDS K,et al. Leptin at the intersection of neuroendocrinology and metabolism:current evidence and therapeutic perspectives [J]. Cell metabolism,2013,18(1):29-42.
|
[38] |
KIMURA I,OZAWA K,INOUE D,et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43 [J]. Nature Communications,2013,4:1829.
|
[39] |
RAHAT-ROZENBLOOM S, FERNANDES J, CHENG J,et al. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans[J]. Eur J Clin Nutr, 2017, 71(8):953-958. DOI: 10.1038/ejcn.2016.249.
|
[40] |
FUKUMORI R, SUGINO T, HASEGAWA Y,et al. Plasma ghrelin concentration is decreased by short chain fatty acids in wethers[J]. Domest Anim Endocrinol, 2011, 41(1):50-55. DOI: 10.1016/j.domaniend.2011.04.001.
|
[41] |
SOHAIL M U, ALTHANI A, ANWAR H,et al. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus[J]. J Diabetes Res, 2017, 2017:9631435. DOI: 10.1155/2017/9631435.
|
[42] |
KUSHWAHA V, RAI P, VARSHNEY S,et al. Sodium butyrate reduces endoplasmic reticulum stress by modulating CHOP and empowers favorable anti-inflammatory adipose tissue immune-metabolism in HFD fed mice model of obesity[J]. Food Chem, 2022, 4:100079. DOI: 10.1016/j.fochms.2022.100079.
|
[43] |
WANG H B, WANG P Y, WANG X,et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57(12):3126-3135. DOI: 10.1007/s10620-012-2259-4.
|
[44] |
CHANG P V, HAO L M, OFFERMANNS S,et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111(6):2247-2252. DOI: 10.1073/pnas.1322269111.
|
[45] |
CORRÊA-OLIVEIRA R, FACHI J L, VIEIRA A,et al. Regulation of immune cell function by short-chain fatty acids[J]. Clin Transl Immunology, 2016, 5(4):e73. DOI: 10.1038/cti.2016.17.
|
[46] |
GEUKING M B, MCCOY K D, MACPHERSON A J. Metabolites from intestinal microbes shape Treg[J]. Cell Res, 2013, 23(12):1339-1340. DOI: 10.1038/cr.2013.125.
|
[47] |
DE OLIVEIRA F L, SALGAÇO M K, DE OLIVEIRA M T,et al. Exploring the potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as promising psychobiotics using SHIME[J]. Nutrients, 2023, 15(6):1521. DOI: 10.3390/nu15061521.
|
[48] |
PARK J S, LEE E J, LEE J C,et al. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells:involvement of NF-kappaB and ERK signaling pathways[J]. Int Immunopharmacol, 2007, 7(1):70-77. DOI: 10.1016/j.intimp.2006.08.015.
|
[49] |
SEGAIN J P, RAINGEARD DE LA BLÉTIÈRE D, BOURREILLE A,et al. Butyrate inhibits inflammatory responses through NF kappa B inhibition:implications for Crohn's disease[J]. Gut, 2000, 47(3):397-403. DOI: 10.1136/gut.47.3.397.
|
[50] |
CHEN G X, RAN X, LI B,et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model[J]. EBioMedicine, 2018, 30:317-325. DOI: 10.1016/j.ebiom.2018.03.030.
|
[51] |
ZHANG Y C, LEI Y T, HONARPISHEH M,et al. Butyrate and class Ⅰ histone deacetylase inhibitors promote differentiation of neonatal porcine islet cells into beta cells[J]. Cells, 2021, 10(11):3249. DOI: 10.3390/cells10113249.
|
[52] |
HU S X, KUWABARA R, DE HAAN B J,et al. Acetate and butyrate improve β-cell metabolism and mitochondrial respiration under oxidative stress[J]. Int J Mol Sci, 2020, 21(4):1542. DOI: 10.3390/ijms21041542.
|
[53] |
XIMENES H M, HIRATA A E, ROCHA M S,et al. Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets[J]. Cell Biochem Funct, 2007, 25(2):173-178. DOI: 10.1002/cbf.1297.
|
[54] |
PERRY R J, PENG L, BARRY N A,et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature, 2016, 534(7606):213-217. DOI: 10.1038/nature18309.
|
[55] |
PRIYADARSHINI M, VILLA S R, FULLER M,et al. An acetate-specific GPCR,FFAR2,regulates insulin secretion[J]. Mol Endocrinol, 2015, 29(7):1055-1066. DOI: 10.1210/me.2015-1007.
|
[56] |
PRIYADARSHINI M, LAYDEN B T. FFAR3 modulates insulin secretion and global gene expression in mouse islets[J]. Islets, 2015, 7(2):e1045182. DOI: 10.1080/19382014.2015.1045182.
|
[57] |
TANG C, AHMED K, GILLE A,et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes[J]. Nat Med, 2015, 21(2):173-177. DOI: 10.1038/nm.3779.
|
[58] |
BOON J, HOY A J, STARK R,et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance[J]. Diabetes, 2013, 62(2):401-410. DOI: 10.2337/db12-0686.
|
[59] |
YANG L, LIN H Q, LIN W T,et al. Exercise ameliorates insulin resistance of type 2 diabetes through motivating short-chain fatty acid-mediated skeletal muscle cell autophagy[J]. Biology, 2020, 9(8):203. DOI: 10.3390/biology9080203.
|
[60] |
GAO Z G, YIN J, ZHANG J,et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7):1509-1517. DOI: 10.2337/db08-1637.
|
[61] |
CHRIETT S, ZERZAIHI O, VIDAL H,et al. The histone deacetylase inhibitor sodium butyrate improves insulin signalling in palmitate-induced insulin resistance in L6 rat muscle cells through epigenetically-mediated up-regulation of Irs1[J]. Mol Cell Endocrinol, 2017, 439:224-232. DOI: 10.1016/j.mce.2016.09.006.
|
[62] |
YAMASHITA H, MARUTA H, JOZUKA M,et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats[J]. Biosci Biotechnol Biochem, 2009, 73(3):570-576. DOI: 10.1271/bbb.80634.
|
[63] |
CHAMBERS E S, VIARDOT A, PSICHAS A,et al. Effects of targeted delivery of propionate to the human colon on appetite regulation,body weight maintenance and adiposity in overweight adults[J]. Gut, 2015, 64(11):1744-1754. DOI: 10.1136/gutjnl-2014-307913.
|
[64] |
AHMED K, TUNARU S, OFFERMANNS S. GPR109A,GPR109B and GPR81,a family of hydroxy-carboxylic acid receptors[J]. Trends Pharmacol Sci, 2009, 30(11):557-562. DOI: 10.1016/j.tips.2009.09.001.
|
[65] |
WILLEBRORDS J, PEREIRA I V, MAES M,et al. Strategies,models and biomarkers in experimental non-alcoholic fatty liver disease research[J]. Prog Lipid Res, 2015, 59:106-125. DOI: 10.1016/j.plipres.2015.05.002.
|
[66] |
MATHEUS V A, MONTEIRO L, OLIVEIRA R B,et al. Butyrate reduces high-fat diet-induced metabolic alterations,hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice[J]. Exp Biol Med, 2017, 242(12):1214-1226. DOI: 10.1177/1535370217708188.
|
[67] |
KHAN S, JENA G. Sodium butyrate reduces insulin-resistance,fat accumulation and dyslipidemia in type-2 diabetic rat:a comparative study with metformin[J]. Chem Biol Interact, 2016, 254:124-134. DOI: 10.1016/j.cbi.2016.06.007.
|
[68] |
DENG M J, QU F, CHEN L,et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol, 2020, 245(3):425-437. DOI: 10.1530/JOE-20-0018.
|
[69] |
CARON A, LEE S, ELMQUIST J K,et al. Leptin and brain-adipose crosstalks[J]. Nat Rev Neurosci, 2018, 19(3):153-165. DOI: 10.1038/nrn.2018.7.
|
[70] |
LI Z, YI C X, KATIRAEI S,et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit[J]. Gut, 2018, 67(7):1269-1279. DOI: 10.1136/gutjnl-2017-314050.
|
[71] |
ARAÚJO J R, TAZI A, BURLEN-DEFRANOUX O,et al. Fermentation products of commensal bacteria alter enterocyte lipid metabolism[J]. Cell Host Microbe, 2020, 27(3):358-375.e7. DOI: 10.1016/j.chom.2020.01.028.
|
[72] |
DEN BESTEN G, BLEEKER A, GERDING A,et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64(7):2398-2408. DOI: 10.2337/db14-1213.
|
[73] |
MOLLICA M P, MATTACE RASO G, CAVALIERE G,et al. Butyrate regulates liver mitochondrial function,efficiency,and dynamics in insulin-resistant obese mice[J]. Diabetes, 2017, 66(5):1405-1418. DOI: 10.2337/db16-0924.
|
[74] |
PATEL B M, GOYAL R K. Liver and insulin resistance:new wine in old bottle!!![J]. Eur J Pharmacol, 2019, 862:172657. DOI: 10.1016/j.ejphar.2019.172657.
|
[75] |
YOSHIDA H, ISHII M, AKAGAWA M. Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway[J]. Arch Biochem Biophys, 2019, 672:108057. DOI: 10.1016/j.abb.2019.07.022.
|
[76] |
SUN M B, LI D, HUA M,et al. Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats[J]. Food Funct, 2022, 13(13):7377-7391. DOI: 10.1039/d2fo01165d.
|
[77] |
ZHANG W Q, ZHAO T T, GUI D K,et al. Sodium butyrate improves liver glycogen metabolism in type 2 diabetes mellitus[J]. J Agric Food Chem, 2019, 67(27):7694-7705. DOI: 10.1021/acs.jafc.9b02083.
|
[78] |
ZHAO T T, GU J L, ZHANG H X,et al. Sodium butyrate-modulated mitochondrial function in high-insulin induced HepG2 cell dysfunction[J]. Oxid Med Cell Longev, 2020, 2020:1904609. DOI: 10.1155/2020/1904609.
|