Chinese General Practice ›› 2024, Vol. 27 ›› Issue (08): 961-970.DOI: 10.12114/j.issn.1007-9572.2023.0360
• Original Research • Previous Articles Next Articles
Received:
2023-06-20
Revised:
2023-09-05
Published:
2024-03-15
Online:
2023-12-19
Contact:
CHEN Changsheng
通讯作者:
陈长生
作者简介:
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2023.0360
编号 | 变量名 | 赋值情况及值范围 |
---|---|---|
1 | 肾病 | 否=0(对照),是=1 |
2 | 性别 | 女=0(对照),男=1 |
3 | 年龄(岁) | <40=1(对照),40~<60=2,≥60=3 |
4 | BMI(kg/m2) | <18.5=1(对照),18.5~<24.0=2,24.0~<28.0=3,≥28.0=4 |
5 | 糖尿病持续时间(年) | <10=0(对照),≥10=1 |
6 | FBG(mg/dL) | 实测值:80~510 |
7 | HbA1c(mg/dL) | 实测值:6.5~13.3 |
8 | LDL(mg/dL) | 实测值:36~267 |
9 | HDL(mg/dL) | 实测值:20~62 |
10 | TG(mg/dL) | 实测值:74~756 |
11 | 治疗类型 | 口服剂=1(对照),胰岛素=2,二者=3 |
12 | 他汀类药物类型 | 无他汀类药物=1(对照),阿托伐他汀=2,瑞舒伐他汀=3 |
13 | SBP(mmHg) | 实测值:105~180 |
14 | DBP(mmHg) | 实测值:60~120 |
Table 1 The description of variable assignment
编号 | 变量名 | 赋值情况及值范围 |
---|---|---|
1 | 肾病 | 否=0(对照),是=1 |
2 | 性别 | 女=0(对照),男=1 |
3 | 年龄(岁) | <40=1(对照),40~<60=2,≥60=3 |
4 | BMI(kg/m2) | <18.5=1(对照),18.5~<24.0=2,24.0~<28.0=3,≥28.0=4 |
5 | 糖尿病持续时间(年) | <10=0(对照),≥10=1 |
6 | FBG(mg/dL) | 实测值:80~510 |
7 | HbA1c(mg/dL) | 实测值:6.5~13.3 |
8 | LDL(mg/dL) | 实测值:36~267 |
9 | HDL(mg/dL) | 实测值:20~62 |
10 | TG(mg/dL) | 实测值:74~756 |
11 | 治疗类型 | 口服剂=1(对照),胰岛素=2,二者=3 |
12 | 他汀类药物类型 | 无他汀类药物=1(对照),阿托伐他汀=2,瑞舒伐他汀=3 |
13 | SBP(mmHg) | 实测值:105~180 |
14 | DBP(mmHg) | 实测值:60~120 |
变量 | 无DN (n=51) | 患DN (n=73) | 检验统计量值 | P值 |
---|---|---|---|---|
性别[例(%)] | 1.759a | 0.185 | ||
女 | 34(66.7) | 40(54.8) | ||
男 | 17(33.3) | 33(45.2) | ||
年龄[例(%)] | 19.229a | <0.001 | ||
<40岁 | 5(9.8) | 4(5.5) | ||
40~<60岁 | 37(72.5) | 28(38.4) | ||
≥60岁 | 9(17.7) | 41(56.1) | ||
BMI[例(%)] | 13.100a | 0.002 | ||
<18.5 kg/m2 | 2(3.9) | 0 | ||
18.5 ~<24.0 kg/m2 | 10(19.6) | 2(2.7) | ||
24.0~<28.0 kg/m2 | 9(17.6) | 12(16.4) | ||
≥28.0 kg/m2 | 30(58.9) | 59(80.9) | ||
糖尿病持续时间[例(%)] | 27.358a | <0.001 | ||
<10年 | 39(76.5) | 21(28.8) | ||
≥10年 | 12(23.5) | 52(71.2) | ||
FBG( | 181.33±65.97 | 229.03±54.84 | -4.381b | <0.001 |
HbA1c[M(QR),%] | 8.10(1.60) | 10.80(0.95) | -5.773c | <0.001 |
LDL( | 109.12±35.17 | 152.68±42.67 | -6.003b | <0.001 |
HDL( | 38.55±8.43 | 35.74±5.84 | 2.193b | 0.030 |
TG( | 181.96±84.95 | 242.04±102.79 | -3.433b | 0.001 |
治疗类型[例(%)] | 4.281a | 0.113 | ||
口服剂 | 35(68.6) | 38(52.1) | ||
胰岛素 | 4(7.8) | 14(19.2) | ||
二者 | 12(23.6) | 21(28.7) | ||
他汀类药物类型[例(%)] | 0.814a | 0.778 | ||
无他汀类药物 | 16(31.3) | 19(26.0) | ||
阿托伐他汀 | 34(66.7) | 53(72.6) | ||
瑞舒伐他汀 | 1(2.0) | 1(1.4) | ||
SBP( | 130±15 | 155±14 | -9.524b | <0.001 |
DBP( | 81±9 | 98±12 | -8.499b | <0.001 |
Table 2 Univariate analysis of risk factors associated with type 2 diabetic nephropathy
变量 | 无DN (n=51) | 患DN (n=73) | 检验统计量值 | P值 |
---|---|---|---|---|
性别[例(%)] | 1.759a | 0.185 | ||
女 | 34(66.7) | 40(54.8) | ||
男 | 17(33.3) | 33(45.2) | ||
年龄[例(%)] | 19.229a | <0.001 | ||
<40岁 | 5(9.8) | 4(5.5) | ||
40~<60岁 | 37(72.5) | 28(38.4) | ||
≥60岁 | 9(17.7) | 41(56.1) | ||
BMI[例(%)] | 13.100a | 0.002 | ||
<18.5 kg/m2 | 2(3.9) | 0 | ||
18.5 ~<24.0 kg/m2 | 10(19.6) | 2(2.7) | ||
24.0~<28.0 kg/m2 | 9(17.6) | 12(16.4) | ||
≥28.0 kg/m2 | 30(58.9) | 59(80.9) | ||
糖尿病持续时间[例(%)] | 27.358a | <0.001 | ||
<10年 | 39(76.5) | 21(28.8) | ||
≥10年 | 12(23.5) | 52(71.2) | ||
FBG( | 181.33±65.97 | 229.03±54.84 | -4.381b | <0.001 |
HbA1c[M(QR),%] | 8.10(1.60) | 10.80(0.95) | -5.773c | <0.001 |
LDL( | 109.12±35.17 | 152.68±42.67 | -6.003b | <0.001 |
HDL( | 38.55±8.43 | 35.74±5.84 | 2.193b | 0.030 |
TG( | 181.96±84.95 | 242.04±102.79 | -3.433b | 0.001 |
治疗类型[例(%)] | 4.281a | 0.113 | ||
口服剂 | 35(68.6) | 38(52.1) | ||
胰岛素 | 4(7.8) | 14(19.2) | ||
二者 | 12(23.6) | 21(28.7) | ||
他汀类药物类型[例(%)] | 0.814a | 0.778 | ||
无他汀类药物 | 16(31.3) | 19(26.0) | ||
阿托伐他汀 | 34(66.7) | 53(72.6) | ||
瑞舒伐他汀 | 1(2.0) | 1(1.4) | ||
SBP( | 130±15 | 155±14 | -9.524b | <0.001 |
DBP( | 81±9 | 98±12 | -8.499b | <0.001 |
模型类型 | 准确率(%) | 精确率(%) | 灵敏度(%) | 特异度(%) | F1-score | AUC | ||
---|---|---|---|---|---|---|---|---|
训练集∶测试集=8∶2 | LR | 训练集 | 89.00 | 90.00 | 91.53 | 85.37 | 0.907 6 | 0.884 5 |
测试集 | 83.33 | 91.67 | 78.57 | 90.00 | 0.846 2 | 0.842 9 | ||
KNN | 训练集 | 91.00 | 94.64 | 89.83 | 92.68 | 0.921 7 | 0.912 6 | |
测试集 | 79.17 | 90.91 | 71.43 | 90.00 | 0.800 0 | 0.807 1 | ||
SVM | 训练集 | 91.00 | 94.64 | 89.83 | 92.68 | 0.921 7 | 0.912 6 | |
测试集 | 79.17 | 90.91 | 71.43 | 90.00 | 0.800 0 | 0.807 1 | ||
BP神经网络 | 训练集 | 86.00 | 84.85 | 93.33 | 75.00 | 0.888 9 | 0.841 7 | |
测试集 | 87.50 | 85.71 | 92.31 | 81.82 | 0.888 9 | 0.870 6 | ||
SSA-BP神经网络 | 训练集 | 92.00 | 94.83 | 91.67 | 92.50 | 0.932 2 | 0.920 8 | |
测试集 | 95.83 | 100.00 | 92.31 | 100.00 | 0.960 0 | 0.961 5 | ||
训练集∶测试集=7∶3 | LR | 训练集 | 87.50 | 90.20 | 88.46 | 86.11 | 0.893 2 | 0.873 0 |
测试集 | 86.11 | 94.44 | 80.95 | 93.33 | 0.871 8 | 0.871 0 | ||
KNN | 训练集 | 94.32 | 97.96 | 92.31 | 97.22 | 0.950 5 | 0.948 0 | |
测试集 | 86.11 | 94.44 | 80.95 | 93.33 | 0.871 8 | 0.871 0 | ||
SVM | 训练集 | 89.77 | 97.78 | 84.62 | 97.22 | 0.907 2 | 0.909 0 | |
测试集 | 86.11 | 100.00 | 76.19 | 100.00 | 0.864 9 | 0.881 0 | ||
BP神经网络 | 训练集 | 85.23 | 92.00 | 83.64 | 87.88 | 0.8762 1 | 0.857 6 | |
测试集 | 72.22 | 75.00 | 66.67 | 77.78 | 0.705 9 | 0.722 2 | ||
SSA-BP神经网络 | 训练集 | 94.32 | 94.64 | 96.36 | 90.91 | 0.955 0 | 0.936 4 | |
测试集 | 91.67 | 100.00 | 83.33 | 100.00 | 0.909 1 | 0.916 7 |
Table 3 Accuracy,precision,sensitivity,specificity,F1-score and AUC of machine learning models in predicting DN under varied sample splitting ratios
模型类型 | 准确率(%) | 精确率(%) | 灵敏度(%) | 特异度(%) | F1-score | AUC | ||
---|---|---|---|---|---|---|---|---|
训练集∶测试集=8∶2 | LR | 训练集 | 89.00 | 90.00 | 91.53 | 85.37 | 0.907 6 | 0.884 5 |
测试集 | 83.33 | 91.67 | 78.57 | 90.00 | 0.846 2 | 0.842 9 | ||
KNN | 训练集 | 91.00 | 94.64 | 89.83 | 92.68 | 0.921 7 | 0.912 6 | |
测试集 | 79.17 | 90.91 | 71.43 | 90.00 | 0.800 0 | 0.807 1 | ||
SVM | 训练集 | 91.00 | 94.64 | 89.83 | 92.68 | 0.921 7 | 0.912 6 | |
测试集 | 79.17 | 90.91 | 71.43 | 90.00 | 0.800 0 | 0.807 1 | ||
BP神经网络 | 训练集 | 86.00 | 84.85 | 93.33 | 75.00 | 0.888 9 | 0.841 7 | |
测试集 | 87.50 | 85.71 | 92.31 | 81.82 | 0.888 9 | 0.870 6 | ||
SSA-BP神经网络 | 训练集 | 92.00 | 94.83 | 91.67 | 92.50 | 0.932 2 | 0.920 8 | |
测试集 | 95.83 | 100.00 | 92.31 | 100.00 | 0.960 0 | 0.961 5 | ||
训练集∶测试集=7∶3 | LR | 训练集 | 87.50 | 90.20 | 88.46 | 86.11 | 0.893 2 | 0.873 0 |
测试集 | 86.11 | 94.44 | 80.95 | 93.33 | 0.871 8 | 0.871 0 | ||
KNN | 训练集 | 94.32 | 97.96 | 92.31 | 97.22 | 0.950 5 | 0.948 0 | |
测试集 | 86.11 | 94.44 | 80.95 | 93.33 | 0.871 8 | 0.871 0 | ||
SVM | 训练集 | 89.77 | 97.78 | 84.62 | 97.22 | 0.907 2 | 0.909 0 | |
测试集 | 86.11 | 100.00 | 76.19 | 100.00 | 0.864 9 | 0.881 0 | ||
BP神经网络 | 训练集 | 85.23 | 92.00 | 83.64 | 87.88 | 0.8762 1 | 0.857 6 | |
测试集 | 72.22 | 75.00 | 66.67 | 77.78 | 0.705 9 | 0.722 2 | ||
SSA-BP神经网络 | 训练集 | 94.32 | 94.64 | 96.36 | 90.91 | 0.955 0 | 0.936 4 | |
测试集 | 91.67 | 100.00 | 83.33 | 100.00 | 0.909 1 | 0.916 7 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
黄富程,刘德新,曹杰,等. 基于ABC优化BP神经网络的船舶交通流量预测[J]. 中国航海,2021,44(2):78-83.
|
[6] |
李卫华,徐涛,李小梨. 基于人工蜂群的BP神经网络算法[J]. 计算机系统应用,2012,21(5):195-197,183.
|
[7] |
|
[8] | |
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
李阳,陈晓泓,王一梅,等. 基于LASSO变量选择联合贝叶斯网络构建恶性肿瘤相关急性肾损伤(AKI)风险预测模型[J]. 复旦学报:医学版,2020,47(4):521-530. DOI:10.3969/j.issn.1672-8467.2020.04.009.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
许条建,金延儒,蒋梅荣,等. 基于麻雀搜索算法优化BP神经网络的深远海养殖平台系缆力预报研究[J]. 渔业现代化,2022,49(6):17-26. DOI:10.3969/j.issn.1007-9580.2022.06.003.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
高珍秀. 基于深度学习技术的2型糖尿病肾病风险预测模型的构建[D]. 南京:南京中医药大学,2021.
|
[30] |
TODAY Study Group,
|
[31] |
TODAY Study Group. Effects of metabolic factors,race-ethnicity,and sex on the development of nephropathy in adolescents and young adults with type 2 diabetes:results from the TODAY study[J]. Diabetes Care,2021,45(5):1056-1064. DOI:10.2337/dc21-1085.
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
何洋. 糖尿病肾病进展的危险因素及预测方程的建立[D]. 兰州:兰州大学,2021.
|
[39] |
|
[40] |
|
[41] |
|
[42] |
马倩倩,孙东旭,石金铭,等. 基于支持向量机与XGboost的成年人群肿瘤患病风险预测研究[J]. 中国全科医学,2020,23(12):1486-1491. DOI:10.12114/j.issn.1007-9572.2020.00.066.
|
[43] |
|
[44] |
于大海,李金,罗艳虹,等. 随机森林模型和决策树模型在肝硬化上消化道出血预后中的应用[J]. 中国卫生统计,2019,36(2):162-166.
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
汪可可,武建辉,周莹,等. 基于BP神经网络的急性脑梗死患者自发性出血性转化的风险预测研究[J]. 中国全科医学,2018,21(12):1413-1418. DOI:10.3969/j.issn.1007-9572.2017.00.189.
|
[50] |
田娟,朱姝婧,陆强,等. 基于BP神经网络预测儿童甲状腺疾病的模型研究[J]. 中国医学物理学杂志,2020,37(10):1340-1344. DOI:10.3969/j.issn.1005-202X.2020.10.022.
|
[51] |
黄仕鑫,浦科学,桑祎莹,等. 基于GA-BP神经网络模型鉴别2型糖尿病性周围神经病变的分类模型研究[J]. 解放军医学杂志,2020,45(1):73-78. DOI:10.11855/j.issn.0577-7402.2020.01.08.
|
[52] | |
[53] |
韦哲,石栋栋,王能才,等. 基于思维进化算法优化的BP神经网络对糖尿病并发症的预测研究[J]. 中国医学装备,2020,17(10):1-4. DOI:10.3969/J.ISSN.1672-8270.2020.10.001.
|
[54] |
|
[55] |
|
[1] | HAN Junjie, WU Di, CHEN Zhisheng, XIAO Yang, SEN Gan. A Nomogram Prediction Model and Validation Study on the Risk of Complicated Diabetic Nephropathy in Type 2 Diabetes Patients [J]. Chinese General Practice, 2024, 27(09): 1054-1061. |
[2] | DENG Yuxuan, HUANG Xuejun, JIANG Yanxia. Recent Advances of Metformin in Treatment of Diabetic Nephropathy [J]. Chinese General Practice, 2024, 27(03): 262-267. |
[3] | WANG Zhen, SHEN Guoqi, LI Yanan, ZHU Yinghua, QIU Hang, ZHENG Di, XU Tongda, LI Wenhua. Development and Validation of a Risk Prediction Model for Contrast-induced Acute Kidney Injury after Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction [J]. Chinese General Practice, 2023, 26(29): 3650-3656. |
[4] | ZHAO Lizhen, LI Weimin, JIANG Ruixia. Clinical Value of Systemic Immune-inflammation Index in the Diagnosis of Diabetic Kidney Disease in Community-dwelling Elderly Patients with Type 2 Diabetes [J]. Chinese General Practice, 2023, 26(18): 2227-2231. |
[5] | SHEN Aomei, LU Qian, FU Xin, WEI Xiaoxia, BIAN Jingru, ZHANG Liyuan, QIANG Wanmin, PANG Dong. Constructing a Risk Prediction Model of Breast Cancer-related Lymphedema Based on a Meta-analysis of Prospective Cohort Studies [J]. Chinese General Practice, 2023, 26(17): 2078-2088. |
[6] | SHU Tao, GUO Zheng, WANG Fei, CHEN Shuyan. Analysis of the Correlation between Time in Range and Diabetic Kidney Disease [J]. Chinese General Practice, 2023, 26(15): 1873-1879. |
[7] | YAN Peng, SONG Jianling, FANG Xiangdong. Recent Developments in Parathyroid Hormone Type 1 Receptor and Kidney Disease [J]. Chinese General Practice, 2023, 26(11): 1398-1403. |
[8] | SHEN Fei, JIANG Weiping, MEI Xiaobin, HAN Yiping, ZHAO Jiayi, FAN Jian, GU Juan, SHEN Yanhong, XU Hongmei, ZHANG Dan, MEN Ying, DING Haiguang, CHEN Caiping, HAN Junhua. Influence of Microbiota-modulating Agents on Gut Flora in Community Patients with Diabetic Nephropathy [J]. Chinese General Practice, 2023, 26(09): 1112-1117. |
[9] | HE Ting, YUAN Li, YANG Xiaoling, YE Ziwei, LI Rao, GU Yan. Risk Prediction Models for Type 2 Diabetes in Asian Adults: a Systematic Review [J]. Chinese General Practice, 2022, 25(34): 4267-4277. |
[10] | Yujie WANG, Jian WANG, Jingwei ZHOU. Effect of Qingre Xiaozheng Formula on Improving Renal Injury in a Rat Model of Diabetic Kidney Disease [J]. Chinese General Practice, 2022, 25(29): 3678-3685. |
[11] | Hanwen YANG, Yaoxian WANG, Qiaoru WU, Jiale ZHANG, Runze YAN, Xiaona WANG, Zhen WANG, Weiwei SUN. Efficacy and Safety of Xiezhuoxiaozheng Therapy in Diabetic Kidney Disease: a Clinical Study [J]. Chinese General Practice, 2022, 25(26): 3252-3257. |
[12] | Yongjian WANG, Weijing QI, Yipeng WANG, Sha HUANG, Cong LI, Na WEI, Jie HU. Classification and Comparative Analysis of Prediction Models for Postpartum Depression [J]. Chinese General Practice, 2022, 25(24): 3036-3042. |
[13] | Yan RAO, Meiqi YAO, Dawei JIANG, Cui MAO. Development and Validation of a Risk Prediction Model of Post-stroke Acute Kidney Injury [J]. Chinese General Practice, 2022, 25(23): 2885-2891. |
[14] | Qishun WU, Jianqiang HE, Taina WANG, Yan XIA, Shu YU, Lin WANG. Analysis of New Cases of Hemodialysis in a Single Center in Recent Five Years [J]. Chinese General Practice, 2022, 25(21): 2582-2588. |
[15] | Qian ZOU, Miaomiao GENG, Yanhong ZHU. Development and External Validation of an Evidence-based Risk Prediction Model for Multidrug-resistant Bacterial Infections in ICU Patients [J]. Chinese General Practice, 2022, 25(12): 1441-1448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||