Chinese General Practice ›› 2023, Vol. 26 ›› Issue (15): 1847-1856.DOI: 10.12114/j.issn.1007-9572.2022.0851
Special Issue: 内分泌代谢性疾病最新文章合集; 数智医疗最新文章合集
• Original Research·Diabetes Complications • Previous Articles Next Articles
Received:
2022-12-16
Revised:
2023-01-24
Published:
2023-05-20
Online:
2022-12-20
Contact:
DUAN Junguo
通讯作者:
段俊国
作者简介:
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2022.0851
序号 | 被引作者 | 被引频次(次) | 中介中心性 |
---|---|---|---|
1 | GULSHAN V | 412 | 0.03 |
2 | ABRÀMOFF M D | 363 | 0.17 |
3 | TING D W | 285 | 0.04 |
4 | NIEMEIJER M | 240 | 0.02 |
5 | HE K | 201 | 0.04 |
6 | QUELLEC G | 179 | 0.04 |
7 | GARGEYA R | 176 | 0.02 |
8 | SZEGEDY C | 172 | 0.03 |
9 | DECENCIERE E | 164 | 0.04 |
10 | KRIZHEVSKY A | 153 | 0.03 |
Table 1 The top 10 authors of cited frequency for studies regarding artificial intelligence in diabetic retinopathy
序号 | 被引作者 | 被引频次(次) | 中介中心性 |
---|---|---|---|
1 | GULSHAN V | 412 | 0.03 |
2 | ABRÀMOFF M D | 363 | 0.17 |
3 | TING D W | 285 | 0.04 |
4 | NIEMEIJER M | 240 | 0.02 |
5 | HE K | 201 | 0.04 |
6 | QUELLEC G | 179 | 0.04 |
7 | GARGEYA R | 176 | 0.02 |
8 | SZEGEDY C | 172 | 0.03 |
9 | DECENCIERE E | 164 | 0.04 |
10 | KRIZHEVSKY A | 153 | 0.03 |
序号 | 被引期刊 | JCR分区 | IF | 被引频次 | 中介中心性 |
---|---|---|---|---|---|
1 | Ophthalmology | Q1 | 14.28 | 791 | 0.02 |
2 | Invest Ophth Vis Sci | Q1 | 4.93 | 711 | 0.01 |
3 | Ieee T Med Imaging | Q1 | 11.04 | 628 | 0.01 |
4 | Brit J Ophthalmol | Q1 | 5.91 | 576 | 0.01 |
5 | Jama-J Am Med Assoc | Q1 | 157.38 | 526 | 0.03 |
6 | Med Image Anal | Q1 | 13.83 | 432 | 0.01 |
7 | Diabetes Care | Q1 | 17.16 | 431 | 0.01 |
8 | Plos One | Q2 | 3.75 | 413 | 0.02 |
9 | Am J Ophthalmol | Q1 | 5.49 | 403 | 0.01 |
10 | Lect Notes Comput Sc | 未查到 | — | 391 | 0.03 |
Table 2 The top 10 journals of cited frequency for studies regarding artificial intelligence in diabetic retinopathy
序号 | 被引期刊 | JCR分区 | IF | 被引频次 | 中介中心性 |
---|---|---|---|---|---|
1 | Ophthalmology | Q1 | 14.28 | 791 | 0.02 |
2 | Invest Ophth Vis Sci | Q1 | 4.93 | 711 | 0.01 |
3 | Ieee T Med Imaging | Q1 | 11.04 | 628 | 0.01 |
4 | Brit J Ophthalmol | Q1 | 5.91 | 576 | 0.01 |
5 | Jama-J Am Med Assoc | Q1 | 157.38 | 526 | 0.03 |
6 | Med Image Anal | Q1 | 13.83 | 432 | 0.01 |
7 | Diabetes Care | Q1 | 17.16 | 431 | 0.01 |
8 | Plos One | Q2 | 3.75 | 413 | 0.02 |
9 | Am J Ophthalmol | Q1 | 5.49 | 403 | 0.01 |
10 | Lect Notes Comput Sc | 未查到 | — | 391 | 0.03 |
序号 | 文章标题 | 第一作者 | 发表年份(年) | 共被引频次(次) |
---|---|---|---|---|
1 | Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[ | GULSHAN V | 2016 | 354 |
2 | Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes[ | TING D W | 2017 | 218 |
3 | Automated Identification of Diabetic Retinopathy Using Deep Learning[ | GARGEYA R | 2017 | 175 |
4 | Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning[ | ABRÀMOFF M D | 2016 | 127 |
5 | Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[ | ABRÀMOFF M D | 2018 | 74 |
6 | Deep learning[ | LECUN Y | 2015 | 69 |
7 | Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning[ | KERMANY D S | 2018 | 61 |
8 | Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[ | POPLIN R | 2018 | 61 |
9 | Clinically applicable deep learning for diagnosis and referral in retinal disease[ | DE F | 2018 | 59 |
10 | Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy[ | KRAUSE J | 2018 | 58 |
Table 3 The top 10 most-cited articles for studies regarding artificial intelligence in diabetic retinopathy
序号 | 文章标题 | 第一作者 | 发表年份(年) | 共被引频次(次) |
---|---|---|---|---|
1 | Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[ | GULSHAN V | 2016 | 354 |
2 | Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes[ | TING D W | 2017 | 218 |
3 | Automated Identification of Diabetic Retinopathy Using Deep Learning[ | GARGEYA R | 2017 | 175 |
4 | Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning[ | ABRÀMOFF M D | 2016 | 127 |
5 | Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[ | ABRÀMOFF M D | 2018 | 74 |
6 | Deep learning[ | LECUN Y | 2015 | 69 |
7 | Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning[ | KERMANY D S | 2018 | 61 |
8 | Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[ | POPLIN R | 2018 | 61 |
9 | Clinically applicable deep learning for diagnosis and referral in retinal disease[ | DE F | 2018 | 59 |
10 | Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy[ | KRAUSE J | 2018 | 58 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] | |
[8] |
陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242-253. DOI:10.16192/j.cnki.1003-2053.2015.02.009.
|
[9] |
|
[10] |
李科科,于文兵,李硕奇,等. 基于CiteSpace的大学生社交焦虑研究的热点与前沿趋势分析[J]. 中国全科医学,2022,25(33):4217-4226. DOI:10.12114/j.issn.1007-9572.2022.0390.
|
[11] |
陈冉,杨皓然,史会连,等. 1991—2021年肝硬化营养研究热点及趋势可视化分析[J]. 中国全科医学,2022(32):4091-4098. DOI:10.12114/j.issn.1007-9572.2022.0247.
|
[12] |
|
[13] |
|
[14] | |
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
尹义龙,袭肖明. 眼科疾病智能诊断方法最新进展[J]. 山东大学学报(医学版),2020,58(11):33-38. DOI:10.6040/j.issn.1671-7554.0.2020.1136.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
药品监督管理局,国家药监局关于批准注册96个医疗器械产品公告[EB/OL]. (2020-09-16)[2023-01-08].
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[1] | LIU Chang, WANG Yufei. Research Status and Prospect of Cross-regional Medical Treatment in China Based on Bibliometric Analysis [J]. Chinese General Practice, 2024, 27(12): 1525-1532. |
[2] | LEI Fang, DU Liang, DONG Min, LIU Xuemei. Transparent Reporting of the Early-stage Clinical Evaluation of Clinical Decision Support Systems Based on Artificial Intelligence [J]. Chinese General Practice, 2024, 27(10): 1267-1270. |
[3] | DING Lixue, LI Yuhong, ZHANG Yudong. Analysis of Hotspots and Frontiers of Allostatic Load Research: a Visualization Analysis Based on CiteSpace [J]. Chinese General Practice, 2024, 27(08): 1008-1014. |
[4] | DONG Na, CUI Ting, WANG Lulu, SHI Ronghui, FENG Jie, HUANG Xiaojun. Research Trends in Artificial Intelligence in Gastric Cancer Diagnosis and Treatment: a 20-year Bibliometric Analysis [J]. Chinese General Practice, 2024, 27(04): 493-501. |
[5] | GAO Jinghong, WANG Yanyan, JIANG Shuai, FU Hang, DUAN Yanran, WANG Sufan, WANG Chengzeng. The Applications of Big Data and Artificial Intelligence in the Prevention and Control of COVID-19 from the Perspective of Haddon Model [J]. Chinese General Practice, 2024, 27(01): 111-117. |
[6] | ZHONG Pingping, NAN Yayun, PENG Linlin, ZHOU Yuting, CHEN Qiong. A Bibliometrics Analysis of Polypharmacy in the Elderly from 2003 to 2022 [J]. Chinese General Practice, 2023, 26(35): 4404-4411. |
[7] | XU Jian, DAI Fangfang, PAN Wenlei, HUANG Qian, LU Ping, WANG Jianfeng, JIA Huan, YANG Yuqi, HUANG Jiaoling. Visual Analysis of Hotspots and Cutting-edge Trends of Community TCM Service Research in China in the Context of Healthy China [J]. Chinese General Practice, 2023, 26(34): 4343-4350. |
[8] | WANG Min, GUO Wenjun, CHEN Yongzhen, FENG Xinyu, TANG Zhongquan, ZHAO Xiaomin, OU Ting, DAI Xinyu, LI Yuntao. Bibliometrics and Visualization Analysis of Medically Unexplained Physical Symptoms Based on Web of Science Database [J]. Chinese General Practice, 2023, 26(31): 3930-3938. |
[9] | CHEN Long, ZENG Kai, LI Sha, TAO Lu, LIANG Wei, WANG Haocen, YANG Rumei. Causes and Countermeasures of Algorithmic Bias and Health Inequity [J]. Chinese General Practice, 2023, 26(19): 2423-2427. |
[10] | GUO Tianci, CHEN Jixin, YU Weijie, LIU Aifeng. Recent Developments in the Application of Artificial Intelligence in the Diagnosis and Treatment of Osteoarthritis [J]. Chinese General Practice, 2023, 26(19): 2428-2433. |
[11] | SHEN Huiwen, LIN Yongzhong, CHEN Shuliang, ZHANG Lihong, MA Chunye, MA Deyuan, ZHANG Ce. Precise Thrombolytic Treatment for Stroke Using AI-based Algorithms: a Real-world Study [J]. Chinese General Practice, 2023, 26(17): 2070-2077. |
[12] | YAN Yuge, HUANG Jiaoling. Visualization Analysis of Primary Healthcare Research during the COVID-19 Pandemic [J]. Chinese General Practice, 2023, 26(16): 2027-2035. |
[13] | GUO Xian, ZHOU Yanbing, LIU Jingying, MU Jinhao, CAO Hui. Visualization Analysis of Global Advances and Hot Spots in Intermittent Fasting [J]. Chinese General Practice, 2023, 26(16): 2036-2046. |
[14] | CHEN Xiangyang, LI Sheyu. Glycemic Management for Hospitalized Patients with Diabetes in Non-endocrine Wards [J]. Chinese General Practice, 2023, 26(15): 1799-1803. |
[15] | YANG Xinxin, GUO Qing, WANG Xiaodi, SI Jianping, XIANG Qie, LONG Xin. Recent 10-year Research Status and Development Trend of Wearable Devices in Health Management in China [J]. Chinese General Practice, 2023, 26(12): 1513-1519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||