Chinese General Practice ›› 2023, Vol. 26 ›› Issue (16): 1979-1983.DOI: 10.12114/j.issn.1007-9572.2022.0547
Special Issue: 男性健康最新文章合集; 老年问题最新文章合集
• Original Research·Focus on Population Health • Previous Articles Next Articles
Received:
2022-05-09
Revised:
2023-03-05
Published:
2023-06-05
Online:
2023-03-16
Contact:
LI Chunlin
通讯作者:
李春霖
作者简介:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2022.0547
组别 | 例数 | 年龄( | BMI( | 糖尿病病程( | FPG( | 2 hPG( | HbA1c( | MAGE( | 血糖变异系数( |
---|---|---|---|---|---|---|---|---|---|
TIR<85% | 59 | 79.8±8.3 | 24.4±2.5 | 19.8±10.3 | 6.3±2.0 | 10.9±3.0 | 7.7±1.4 | 5.2±1.5 | 27.8±9.1 |
TIR≥85% | 141 | 75.3±9.1 | 25.4±2.5 | 13.2±8.1 | 5.8±1.4 | 8.9±2.6 | 6.8±1.2 | 3.1±1.2 | 17.5±5.8 |
t(χ2)值 | -3.295 | 2.707 | -4.888 | -2.045 | -4.649 | -4.606 | -10.279 | -9.545 | |
P值 | 0.001 | 0.007 | <0.001 | 0.043 | <0.001 | <0.001 | <0.001 | <0.001 | |
组别 | 收缩压( | 舒张压( | TC( | TG( | LDL-C( | HDL-C( | 服用二甲双胍〔n(%)〕 | 服用磺胺类药物〔n(%)〕 | 使用胰岛素〔n(%)〕 |
TIR<85% | 129±11 | 71±8 | 4.25±0.92 | 1.39±0.79 | 2.48±0.79 | 1.16±0.33 | 30(50.8) | 11(18.6) | 44(74.6) |
TIR≥85% | 126±11 | 71±8 | 4.17±0.83 | 1.49±0.89 | 2.42±0.69 | 1.12±0.32 | 68(48.2) | 43(30.5) | 48(34.0) |
t(χ2)值 | -1.500 | 0.001 | -0.583 | 0.812 | -0.519 | -0.774 | 0.114a | 2.965a | 27.512a |
P值 | 0.135 | 0.999 | 0.561 | 0.418 | 0.605 | 0.440 | 0.735 | 0.085 | <0.001 |
Table 1 Baseline clinical characteristics of participants with TIR<85% and those with TIR≥85%
组别 | 例数 | 年龄( | BMI( | 糖尿病病程( | FPG( | 2 hPG( | HbA1c( | MAGE( | 血糖变异系数( |
---|---|---|---|---|---|---|---|---|---|
TIR<85% | 59 | 79.8±8.3 | 24.4±2.5 | 19.8±10.3 | 6.3±2.0 | 10.9±3.0 | 7.7±1.4 | 5.2±1.5 | 27.8±9.1 |
TIR≥85% | 141 | 75.3±9.1 | 25.4±2.5 | 13.2±8.1 | 5.8±1.4 | 8.9±2.6 | 6.8±1.2 | 3.1±1.2 | 17.5±5.8 |
t(χ2)值 | -3.295 | 2.707 | -4.888 | -2.045 | -4.649 | -4.606 | -10.279 | -9.545 | |
P值 | 0.001 | 0.007 | <0.001 | 0.043 | <0.001 | <0.001 | <0.001 | <0.001 | |
组别 | 收缩压( | 舒张压( | TC( | TG( | LDL-C( | HDL-C( | 服用二甲双胍〔n(%)〕 | 服用磺胺类药物〔n(%)〕 | 使用胰岛素〔n(%)〕 |
TIR<85% | 129±11 | 71±8 | 4.25±0.92 | 1.39±0.79 | 2.48±0.79 | 1.16±0.33 | 30(50.8) | 11(18.6) | 44(74.6) |
TIR≥85% | 126±11 | 71±8 | 4.17±0.83 | 1.49±0.89 | 2.42±0.69 | 1.12±0.32 | 68(48.2) | 43(30.5) | 48(34.0) |
t(χ2)值 | -1.500 | 0.001 | -0.583 | 0.812 | -0.519 | -0.774 | 0.114a | 2.965a | 27.512a |
P值 | 0.135 | 0.999 | 0.561 | 0.418 | 0.605 | 0.440 | 0.735 | 0.085 | <0.001 |
组别 | 例数 | HbA1c检测次数(次) | HbA1c均值(%) | HbA1c变异系数(%) | HVS(分) |
---|---|---|---|---|---|
TIR<85% | 59 | 2.3±1.0 | 7.4±0.6 | 9.7±3.8 | 48.7±20.4 |
TIR≥85% | 141 | 2.5±1.2 | 6.9±0.8 | 8.2±4.5 | 32.5±20.8 |
t值 | 0.925 | -4.980 | -2.207 | -5.037 | |
P值 | 0.356 | <0.001 | 0.028 | <0.001 |
Table 2 Comparison of HbA1c detection times and HbA1c variability indices between two groups during the follow-up
组别 | 例数 | HbA1c检测次数(次) | HbA1c均值(%) | HbA1c变异系数(%) | HVS(分) |
---|---|---|---|---|---|
TIR<85% | 59 | 2.3±1.0 | 7.4±0.6 | 9.7±3.8 | 48.7±20.4 |
TIR≥85% | 141 | 2.5±1.2 | 6.9±0.8 | 8.2±4.5 | 32.5±20.8 |
t值 | 0.925 | -4.980 | -2.207 | -5.037 | |
P值 | 0.356 | <0.001 | 0.028 | <0.001 |
模型 | HbA1c均值 | HbA1c变异系数 | HVS | ||||||
---|---|---|---|---|---|---|---|---|---|
b(95%CI) | P值 | R2 | b(95%CI) | P值 | R2 | b(95%CI) | P值 | R2 | |
单因素回归分析模型 | -0.02(-0.03,-0.01) | <0.001 | 0.156 | -0.06(-0.10,-0.03) | 0.001 | 0.057 | -0.55(-0.72,-0.37) | <0.001 | 0.160 |
多因素回归分析模型1 | -0.02(-0.02,-0.01) | <0.001 | 0.206 | -0.07(-0.10,-0.03) | 0.001 | 0.059 | -0.49(-0.68,-0.31) | <0.001 | 0.175 |
多因素回归分析模型2 | -0.01(-0.02,-0.01) | 0.001 | 0.326 | -0.07(-0.12,-0.03) | 0.003 | 0.100 | -0.47(-0.69,-0.25) | <0.001 | 0.229 |
多因素回归分析模型3 | -0.01(-0.02,0.00) | 0.002 | 0.329 | -0.07(-0.12,-0.03) | 0.003 | 0.100 | -0.44(-0.67,-0.21) | <0.001 | 0.234 |
Table 3 Multiple linear regression analysis of the influence of TIR on long-term HbA1c variability
模型 | HbA1c均值 | HbA1c变异系数 | HVS | ||||||
---|---|---|---|---|---|---|---|---|---|
b(95%CI) | P值 | R2 | b(95%CI) | P值 | R2 | b(95%CI) | P值 | R2 | |
单因素回归分析模型 | -0.02(-0.03,-0.01) | <0.001 | 0.156 | -0.06(-0.10,-0.03) | 0.001 | 0.057 | -0.55(-0.72,-0.37) | <0.001 | 0.160 |
多因素回归分析模型1 | -0.02(-0.02,-0.01) | <0.001 | 0.206 | -0.07(-0.10,-0.03) | 0.001 | 0.059 | -0.49(-0.68,-0.31) | <0.001 | 0.175 |
多因素回归分析模型2 | -0.01(-0.02,-0.01) | 0.001 | 0.326 | -0.07(-0.12,-0.03) | 0.003 | 0.100 | -0.47(-0.69,-0.25) | <0.001 | 0.229 |
多因素回归分析模型3 | -0.01(-0.02,0.00) | 0.002 | 0.329 | -0.07(-0.12,-0.03) | 0.003 | 0.100 | -0.44(-0.67,-0.21) | <0.001 | 0.234 |
模型 | HbA1c均值 | HbA1c变异系数 | HVS | ||||||
---|---|---|---|---|---|---|---|---|---|
b(95%CI) | P值 | R2 | b(95%CI) | P值 | R2 | b(95%CI) | P值 | R2 | |
单因素回归分析模型 | -0.02(-0.03,-0.01) | <0.001 | 0.186 | -0.09(-0.16,-0.03) | 0.003 | 0.081 | -0.72(-0.99,-0.45) | <0.001 | 0.213 |
多因素回归分析模型1 | -0.02(-0.03,-0.01) | <0.001 | 0.206 | -0.09(-0.16,-0.02) | 0.014 | 0.085 | -0.64(-0.95,-0.33) | <0.001 | 0.238 |
多因素回归分析模型2 | -0.01(-0.02,0.00) | 0.070 | 0.329 | -0.07(-0.16,0.01) | 0.098 | 0.140 | -0.45(-0.80,-0.09) | 0.014 | 0.330 |
多因素回归分析模型3 | -0.01(-0.02,0.00) | 0.142 | 0.342 | -0.07(-0.16,0.02) | 0.114 | 0.141 | -0.41(-0.77,-0.04) | 0.029 | 0.336 |
Table 4 Multiple linear regression analysis of the relationship of TIR and long-term HbA1c variability in the participants after removing the deceased and missing cases
模型 | HbA1c均值 | HbA1c变异系数 | HVS | ||||||
---|---|---|---|---|---|---|---|---|---|
b(95%CI) | P值 | R2 | b(95%CI) | P值 | R2 | b(95%CI) | P值 | R2 | |
单因素回归分析模型 | -0.02(-0.03,-0.01) | <0.001 | 0.186 | -0.09(-0.16,-0.03) | 0.003 | 0.081 | -0.72(-0.99,-0.45) | <0.001 | 0.213 |
多因素回归分析模型1 | -0.02(-0.03,-0.01) | <0.001 | 0.206 | -0.09(-0.16,-0.02) | 0.014 | 0.085 | -0.64(-0.95,-0.33) | <0.001 | 0.238 |
多因素回归分析模型2 | -0.01(-0.02,0.00) | 0.070 | 0.329 | -0.07(-0.16,0.01) | 0.098 | 0.140 | -0.45(-0.80,-0.09) | 0.014 | 0.330 |
多因素回归分析模型3 | -0.01(-0.02,0.00) | 0.142 | 0.342 | -0.07(-0.16,0.02) | 0.114 | 0.141 | -0.41(-0.77,-0.04) | 0.029 | 0.336 |
[1] |
|
[2] |
|
[3] |
|
[4] |
戴冬君,陆静毅,张磊,等. 应用葡萄糖在目标范围内时间评价2型糖尿病血糖控制情况的适宜切点分析[J]. 中华医学杂志,2020,100(38):2990-2996. DOI:10.3760/cma.j.cn112137-20200619-01895.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
American Diabetes Association. 6. Glycemic targets:standards of medical care in diabetes-2020[J]. Diabetes Care,2020,43(s1):66-76. DOI:10.2337/dc20-S006.
|
[10] |
|
[11] |
彭慧敏,邓洪容,周泳雯,等. 血糖变异性对1型糖尿病患者葡萄糖目标范围内时间与血糖管理指标关系的影响[J]. 中华医学杂志,2022,102(16):1190-1195. DOI:10.3760/cma.j.cn112137-20211009-02236.
|
[12] |
田景琰,宁光. 管理糖化血红蛋白变异性 降低糖尿病患者全因死亡风险[J]. 中华内科杂志,2022,61(4):367-369. DOI:10.3760/cma.j.cn112138-20210622-00436.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华内分泌代谢杂志,2021,37(4):311-398. DOI:10.3760/cma.j.cn311282-20210304-00142.
|
[19] |
|
[20] |
中华医学会内分泌学分会. 糖尿病患者血糖波动管理专家共识[J]. 中华内分泌代谢杂志,2017,33(8):633-636. DOI:10.3760/cma.j.issn.1000-6699.2017.08.002.
|
[21] |
中华医学会糖尿病学分会. 中国血糖监测临床应用指南(2021年版)[J]. 中华糖尿病杂志,2021,13(10):936-948. DOI:10.3760/cma.j.cn115791-20210810-00436.
|
[1] | Eating Disorders Coordination Group of the Psychosomatic Medicine Society of the Chinese Medical Association, Eating Disorders Research Collaboration Group of the Psychiatric Medicine Society of the Chinese Medical Association, CHEN Yan, CHEN Han, LIU Lanying, KONG Qingmei, QIAO Huifen, ZHANG Lan, LI Xueni, KUANG Guifang, ZHANG Darong, LI Keqing, WANG Zhen, CHEN Jue. Chinese Expert Consensus on the Diagnosis and Treatment of Bulimia Nervosa [J]. Chinese General Practice, 2023, 26(36): 4487-4497. |
[2] | LU Lixia, WANG Rongqi. Advances in Liver Cancer Screening and Health Surveillance Management in Primary Care Institutions [J]. Chinese General Practice, 2023, 26(36): 4505-4509. |
[3] | Expert Consensus Writing Group of Integrated Traditional Chinese and Western Medicine Management for Chronic Obstructive Pulmonary Disease. Expert Consensus on Integrated Traditional Chinese and Western Medicine Management for Chronic Obstructive Pulmonary Disease (2023 Edition) [J]. Chinese General Practice, 2023, 26(35): 4359-4371. |
[4] | ZHONG Pingping, NAN Yayun, PENG Linlin, ZHOU Yuting, CHEN Qiong. A Bibliometrics Analysis of Polypharmacy in the Elderly from 2003 to 2022 [J]. Chinese General Practice, 2023, 26(35): 4404-4411. |
[5] | XIE Xuemei, GAO Jing, BAI Dingxi, LU Xianying, HE Jiali, LI Yue. Current Status of Polypharmacy in the Elderly and Its Influencing Factors: a Meta-analysis [J]. Chinese General Practice, 2023, 26(35): 4394-4403. |
[6] | XU Man, AN Zhuoling, ZHANG Yuhui, MA Zhuo. Current Situation of Potentially Inappropriate Medication in Older Cancer Patients and Strategies to Address It [J]. Chinese General Practice, 2023, 26(35): 4382-4387. |
[7] | LU Yihan, WANG Jiwen, SUN Yue, FENG Runrun, HAN Yufei, SONG Zhenzhen, SUN Ying, DAI Huihua, CHEN Xing. Risk Factors and Maternal and Neonatal Outcomes of Pregnant Women with Total Labor over 24 Hours [J]. Chinese General Practice, 2023, 26(35): 4459-4463. |
[8] | ZHANG Qian, LI Shu, LI Pengmei. Interpretation of the 2023 AGS Beers Criteria: Potentially Inappropriate Medication Use in Older Adults [J]. Chinese General Practice, 2023, 26(35): 4372-4381. |
[9] | GU Hanxin, LIU Yang, LIU Yuanli. Falls Prevention Intervention for Community-dwelling Older Adults from the Perspective of Policy Tools: an International Comparative Study [J]. Chinese General Practice, 2023, 26(34): 4231-4238. |
[10] | HUANG Jinling, ZENG Zhirong. The Logic and Trend of Urban Community Health Service Policies in China [J]. Chinese General Practice, 2023, 26(34): 4239-4245. |
[11] | WANG Yue, CHEN Qing, LIU Lurong. Detection Rate of Depression and Its Influencing Factors in Chinese Elderly: a Meta-analysis [J]. Chinese General Practice, 2023, 26(34): 4329-4335. |
[12] | LIN Kai, YAO Mi, CHEN Zhang, JI Xinxin, LIN Runqi, CHEN Yongsong, Sim MOIRA. Conceptual Framework and Responding Approach of Treatment Burden of Type 2 Diabetes: a Video Recording-based Analysis [J]. Chinese General Practice, 2023, 26(34): 4302-4307. |
[13] | LI Dianjiang, PAN Enchun, SUN Zhongming, WEN Jinbo, WANG Miaomiao, WU Ming, SHEN Chong. The Current Status and Influencing Factors of Clinical Inertia in Type 2 Diabetes Patients in Community [J]. Chinese General Practice, 2023, 26(34): 4296-4301. |
[14] | WANG Zhe, DONG Zhihao, ZHENG Hao, KONG Wencheng, ZHANG Yukuan, ZHANG Qiuyue, HAN Jing. Construction of Optimized Treatment Plan of Acupuncture for Migraine Based on Entropy Weight-TOPSIS Method [J]. Chinese General Practice, 2023, 26(34): 4336-4342. |
[15] | ZHOU Jie, HU Lingjuan, HUAI Qingyu. Evaluation of Medical Level in China by Provinces Based on Principal Component Analysis and TOPSIS Model [J]. Chinese General Practice, 2023, 26(34): 4254-4260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||