Chinese General Practice ›› 2022, Vol. 25 ›› Issue (17): 2115-2120.DOI: 10.12114/j.issn.1007-9572.2022.0005
• Article • Previous Articles Next Articles
Received:
2021-12-21
Revised:
2022-02-14
Published:
2022-04-28
Online:
2022-04-28
Contact:
Jingyu LIU
About author:
通讯作者:
刘敬禹
作者简介:
基金资助:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2022.0005
项目 | 例数 | 年龄( | 性别〔n(%)〕 | 吸烟史〔n(%)〕 | 癌症家族史〔n(%)〕 | 结节单、多发〔n(%)〕 | 结节平均直径( | 结节体积( | 实性占比( | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
男 | 女 | 有 | 无 | 有 | 无 | 单发 | 多发 | ||||||
实性结节组 | 82 | 54.7±12.9 | 46(56.1) | 36(43.9) | 33(40.2) | 49(59.8) | 30(36.6) | 52(63.4) | 28(34.1) | 54(65.9) | 1.1±0.5 | 881.2±460.5 | 91.0±11.3 |
GGN组 | 93 | 55.6±11.6 | 57(61.3) | 36(38.7) | 31(33.3) | 62(66.7) | 33(35.5) | 60(64.5) | 32(34.4) | 61(65.6) | 1.2±0.5 | 793.0±456.5 | 21.8±19.7 |
检验统计量值 | -0.496a | 0.485 | 0.897 | 0.120 | 0.001 | -0.327a | 1.271a | 28.360a | |||||
P值 | 0.621 | 0.486 | 0.344 | 0.729 | 0.971 | 0.744 | 0.206 | <0.001 | |||||
项目 | 结节部位〔n(%)〕 | 恶性概率〔n(%)〕 | 表面征象〔n(%)〕 | 平均CT值( | 偏度〔M(P 25,P 75)〕 | 峰度( | |||||||
右肺上叶 | 右肺中叶 | 右肺下叶 | 左肺上叶 | 左肺下叶 | 中危 | 高危 | 有 | 无 | |||||
实性结节组 | 22(26.8) | 11(13.4) | 16(19.5) | 25(30.5) | 8(9.8) | 40(48.8) | 42(51.2) | 40(48.8) | 42(51.2) | -222.8±216.8 | 0.6(-0.1,1.4) | 2.3±0.7 | |
GGN组 | 35(37.6) | 8(8.6) | 12(12.9) | 26(28.0) | 12(12.9) | 44(47.3) | 49(52.7) | 45(48.4) | 48(51.6) | -600.2±191.1 | 0.3(-0.1,1.1) | 2.3±0.8 | |
检验统计量值 | 4.155 | 0.038 | 0.003 | 12.239a | 1.285b | -0.639a | |||||||
P值 | 0.385 | 0.846 | 0.959 | <0.001 | 0.201 | 0.524 |
Table 1 Comparison of clinical data and imaging findings between patients with solid and ground-glass pulmonary nodules
项目 | 例数 | 年龄( | 性别〔n(%)〕 | 吸烟史〔n(%)〕 | 癌症家族史〔n(%)〕 | 结节单、多发〔n(%)〕 | 结节平均直径( | 结节体积( | 实性占比( | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
男 | 女 | 有 | 无 | 有 | 无 | 单发 | 多发 | ||||||
实性结节组 | 82 | 54.7±12.9 | 46(56.1) | 36(43.9) | 33(40.2) | 49(59.8) | 30(36.6) | 52(63.4) | 28(34.1) | 54(65.9) | 1.1±0.5 | 881.2±460.5 | 91.0±11.3 |
GGN组 | 93 | 55.6±11.6 | 57(61.3) | 36(38.7) | 31(33.3) | 62(66.7) | 33(35.5) | 60(64.5) | 32(34.4) | 61(65.6) | 1.2±0.5 | 793.0±456.5 | 21.8±19.7 |
检验统计量值 | -0.496a | 0.485 | 0.897 | 0.120 | 0.001 | -0.327a | 1.271a | 28.360a | |||||
P值 | 0.621 | 0.486 | 0.344 | 0.729 | 0.971 | 0.744 | 0.206 | <0.001 | |||||
项目 | 结节部位〔n(%)〕 | 恶性概率〔n(%)〕 | 表面征象〔n(%)〕 | 平均CT值( | 偏度〔M(P 25,P 75)〕 | 峰度( | |||||||
右肺上叶 | 右肺中叶 | 右肺下叶 | 左肺上叶 | 左肺下叶 | 中危 | 高危 | 有 | 无 | |||||
实性结节组 | 22(26.8) | 11(13.4) | 16(19.5) | 25(30.5) | 8(9.8) | 40(48.8) | 42(51.2) | 40(48.8) | 42(51.2) | -222.8±216.8 | 0.6(-0.1,1.4) | 2.3±0.7 | |
GGN组 | 35(37.6) | 8(8.6) | 12(12.9) | 26(28.0) | 12(12.9) | 44(47.3) | 49(52.7) | 45(48.4) | 48(51.6) | -600.2±191.1 | 0.3(-0.1,1.1) | 2.3±0.8 | |
检验统计量值 | 4.155 | 0.038 | 0.003 | 12.239a | 1.285b | -0.639a | |||||||
P值 | 0.385 | 0.846 | 0.959 | <0.001 | 0.201 | 0.524 |
变量 | 赋值 |
---|---|
肺结节增长 | 增长=1,无增长=0 |
年龄 | 实测值 |
性别 | 男=1,女=0 |
吸烟史 | 有=1,无=0 |
癌症家族史 | 有=1,无=0 |
结节类型 | 多发=1,单发=0 |
结节平均直径 | 实测值 |
结节体积 | 实测值 |
实性占比 | 实测值 |
结节部位 | 右肺上叶=1,右肺中叶=2,右肺下叶=3,左肺上叶=4,左肺下叶=5 |
恶性概率 | 高危=1,中危=0 |
表面征象 | 有=1,无=0 |
平均CT值 | 实测值 |
偏度 | 实测值 |
峰度 | 实测值 |
Table 2 Cox proportional risk regression analysis variable assignment table of influencing factors of pulmonary nodule growth
变量 | 赋值 |
---|---|
肺结节增长 | 增长=1,无增长=0 |
年龄 | 实测值 |
性别 | 男=1,女=0 |
吸烟史 | 有=1,无=0 |
癌症家族史 | 有=1,无=0 |
结节类型 | 多发=1,单发=0 |
结节平均直径 | 实测值 |
结节体积 | 实测值 |
实性占比 | 实测值 |
结节部位 | 右肺上叶=1,右肺中叶=2,右肺下叶=3,左肺上叶=4,左肺下叶=5 |
恶性概率 | 高危=1,中危=0 |
表面征象 | 有=1,无=0 |
平均CT值 | 实测值 |
偏度 | 实测值 |
峰度 | 实测值 |
变量 | 单因素Cox比例风险回归分析 | 多因素Cox比例风险回归分析 | ||
---|---|---|---|---|
HR(95%CI) | P值 | HR(95%CI) | P值 | |
年龄 | 1.016(0.989,1.043) | 0.250 | — | — |
性别 | 0.759(0.380,1.516) | 0.434 | — | — |
吸烟史 | 1.863(0.949,3.659) | 0.071 | — | — |
癌症家族史 | 2.228(1.134,4.381) | 0.020 | — | — |
结节数目 | 1.088(0.530,2.233) | 0.817 | — | — |
结节平均直径 | 4.059(2.282,7.218) | <0.001 | 2.185(1.079,4.425) | 0.030 |
结节体积 | 1.001(1.001,1.002) | <0.001 | 1.001(1.000,1.001) | 0.022 |
实性占比 | 0.987(0.958,1.017) | 0.391 | — | — |
结节部位 | 1.047(0.817,1.341) | 0.717 | — | — |
恶性概率 | 2.559(1.245,5.260) | 0.011 | 2.232(1.036,4.806) | 0.040 |
表面征象 | 2.781(1.354,5.715) | 0.005 | 2.125(1.006,4.489) | 0.048 |
平均CT值 | 1.000(0.999,1.002) | 0.679 | — | — |
偏度 | 0.962(0.693,1.334) | 0.816 | — | — |
峰度 | 1.035(0.655,1.633) | 0.884 | — | — |
Table 3 Univariate and multivariate Cox proportional risk regression analyses of factors associated with the growth of solid pulmonary nodules
变量 | 单因素Cox比例风险回归分析 | 多因素Cox比例风险回归分析 | ||
---|---|---|---|---|
HR(95%CI) | P值 | HR(95%CI) | P值 | |
年龄 | 1.016(0.989,1.043) | 0.250 | — | — |
性别 | 0.759(0.380,1.516) | 0.434 | — | — |
吸烟史 | 1.863(0.949,3.659) | 0.071 | — | — |
癌症家族史 | 2.228(1.134,4.381) | 0.020 | — | — |
结节数目 | 1.088(0.530,2.233) | 0.817 | — | — |
结节平均直径 | 4.059(2.282,7.218) | <0.001 | 2.185(1.079,4.425) | 0.030 |
结节体积 | 1.001(1.001,1.002) | <0.001 | 1.001(1.000,1.001) | 0.022 |
实性占比 | 0.987(0.958,1.017) | 0.391 | — | — |
结节部位 | 1.047(0.817,1.341) | 0.717 | — | — |
恶性概率 | 2.559(1.245,5.260) | 0.011 | 2.232(1.036,4.806) | 0.040 |
表面征象 | 2.781(1.354,5.715) | 0.005 | 2.125(1.006,4.489) | 0.048 |
平均CT值 | 1.000(0.999,1.002) | 0.679 | — | — |
偏度 | 0.962(0.693,1.334) | 0.816 | — | — |
峰度 | 1.035(0.655,1.633) | 0.884 | — | — |
变量 | 单因素Cox比例风险回归分析 | 多因素Cox比例风险回归分析 | ||
---|---|---|---|---|
HR(95%CI) | P值 | HR(95%CI) | P值 | |
年龄 | 0.985(0.958,1.013) | 0.296 | — | — |
性别 | 1.023(0.536,1.949) | 0.946 | — | — |
吸烟史 | 1.877(0.999,3.526) | 0.050 | — | — |
癌症家族史 | 1.023(0.532,1.967) | 0.947 | — | — |
结节数目 | 0.862(0.452,1.645) | 0.653 | — | — |
结节平均直径 | 5.552(2.811,10.964) | <0.001 | 2.458(1.053,5.739) | 0.038 |
结节体积 | 1.001(1.000,1.001) | <0.001 | 1.001(1.000,1.002) | 0.010 |
实性占比 | 1.028(1.012,1.044) | 0.001 | 1.022(1.002,1.041) | 0.030 |
结节部位 | 0.990(0.804,1.218) | 0.922 | — | — |
恶性概率 | 2.813(1.422,5.562) | 0.003 | 2.386(1.174,4.850) | 0.016 |
表面征象 | 3.119(1.578,6.165) | 0.001 | 3.026(1.492,6.136) | 0.002 |
平均CT值 | 1.003(1.001,1.005) | 0.002 | 1.002(1.000,1.003) | 0.045 |
偏度 | 1.521(1.055,2.193) | 0.025 | — | — |
峰度 | 0.968(0.643,1.458) | 0.877 | — | — |
Table 4 Univariate and multivariate Cox proportional risk regression analyses of associated with the growth of ground-glass pulmonary nodules
变量 | 单因素Cox比例风险回归分析 | 多因素Cox比例风险回归分析 | ||
---|---|---|---|---|
HR(95%CI) | P值 | HR(95%CI) | P值 | |
年龄 | 0.985(0.958,1.013) | 0.296 | — | — |
性别 | 1.023(0.536,1.949) | 0.946 | — | — |
吸烟史 | 1.877(0.999,3.526) | 0.050 | — | — |
癌症家族史 | 1.023(0.532,1.967) | 0.947 | — | — |
结节数目 | 0.862(0.452,1.645) | 0.653 | — | — |
结节平均直径 | 5.552(2.811,10.964) | <0.001 | 2.458(1.053,5.739) | 0.038 |
结节体积 | 1.001(1.000,1.001) | <0.001 | 1.001(1.000,1.002) | 0.010 |
实性占比 | 1.028(1.012,1.044) | 0.001 | 1.022(1.002,1.041) | 0.030 |
结节部位 | 0.990(0.804,1.218) | 0.922 | — | — |
恶性概率 | 2.813(1.422,5.562) | 0.003 | 2.386(1.174,4.850) | 0.016 |
表面征象 | 3.119(1.578,6.165) | 0.001 | 3.026(1.492,6.136) | 0.002 |
平均CT值 | 1.003(1.001,1.005) | 0.002 | 1.002(1.000,1.003) | 0.045 |
偏度 | 1.521(1.055,2.193) | 0.025 | — | — |
峰度 | 0.968(0.643,1.458) | 0.877 | — | — |
[1] |
|
[2] |
杨锋,樊军,田周俊逸,等. 人群肺亚实性结节CT筛查及人工智能应用研究初探[J]. 中华胸心血管外科杂志,2020,36(3):145-150. DOI:10.3760/cma.j.cn112434-20191126-00420.
|
[3] |
中华医学会呼吸病学分会肺癌学组,中国肺癌防治联盟专家组.肺结节诊治中国专家共识(2018年版)[J]. 中华结核和呼吸杂志,2018,41(10):763-771. DOI:10.3760/cma.j.issn.1001-0939.2018.10.004.
|
[4] |
盛林丽.基于人工智能CT定量参数预测肺纯磨玻璃结节生长趋势的临床研究[D]. 昆明:昆明医科大学,2021.
|
[5] |
李欣菱,王颖. 人工智能在肺结节检测与诊断中的应用及发展[J]. 新发传染病电子杂志,2019,4(3):185-189. DOI:10.19871/j.cnki.xfcrbzz.2019.03.014.
|
[6] |
马景旭,陈欢,王红. 分析肺部影像人工智能诊断系统鉴别诊断肺结节性质[J]. 临床肺科杂志,2021,26(6):842-846.
|
[7] |
刘娜,赵正凯,邹佳瑜,等. 基于人工智能的胸部CT肺结节检出及良恶性诊断效能评估[J]. CT理论与应用研究,2021,30(6):709-715. DOI:10.15953/j.1004-4140.2021.30.06.06.
|
[8] |
曹孟昆,姜杰,朱晓雷,等. 人工智能肺部结节辅助诊疗系统预测肺结节的良恶性及浸润情况[J]. 中国胸心血管外科临床杂志,2021,28(3):283-287.
|
[9] |
尹泚,毛文杰,李斌,等. 人工智能系统在肺结节检出及良恶性鉴别中的应用研究[J]. 中华胸心血管外科杂志,2020,36(9):553-556. DOI:10.3760/cma.j.cn112434-20200817-00375.
|
[10] |
|
[11] |
中华医学会放射学分会心胸学组. 低剂量螺旋CT肺癌筛查专家共识[J]. 中华放射学杂志,2015,9(5):328-335.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
李甜,李晓东,刘敬禹. 人工智能辅助诊断肺结节的临床价值研究[J]. 中国全科医学,2020,23(7):828-831,836. DOI:10.12114/j.issn.1007-9572.2020.00.052.
|
[16] |
|
[17] |
|
[18] |
范卫杰,张冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J]. 中华肺部疾病杂志:电子版,2021,14(5):549-553.
|
[19] |
张晓菊.《肺结节诊治中国专家共识(2018版)》解读[J]. 中华实用诊断与治疗杂志,2019,33(1):1-3.
|
[20] |
蔡雅倩,张正华,韩丹,等. AI对肺磨玻璃结节筛查及定性的临床应用研究[J]. 放射学实践,2019,34(9):958-962. DOI:10.13609/j.cnki.1000-0313.2019.09.005.
|
[21] |
|
[22] |
张正华,周小君,韩丹,等. 基于AI对磨玻璃密度早期肺癌浸润相关因素Logistic回归分析[J]. 临床放射学杂志,2020,39(10):2120-2123. DOI:10.13437/j.cnki.jcr.2020.10.045.
|
[23] | |
[24] |
|
[25] |
|
[26] |
张世佳,赵静,任胜祥,等. 生物标记物应用于肺癌早期诊断和筛查研究进展[J]. 中华健康管理学杂志,2017,11(4):383-387. DOI:10.3760/cma.j.issn.1674-0815.2017.04.018.
|
[1] | LIU Weina, GE Haiyan, MA Jing, CAO Qinying, BAI Xingyu, CUI Shifang, QIAO Yanxia. A Study on the Relationship of Vitamin A and E Levels in Umbilical Cord Blood with Respiratory Distress Syndrome in Preterm Infants [J]. Chinese General Practice, 2023, 26(33): 4152-4158. |
[2] | LI Jixin, QIU Linjie, REN Yan, WANG Wenru, LI Meijie, ZHANG Jin. The Correlation of Dietary Inflammatory Index with Overweight, Obesity and Abdominal Obesity: a Meta-analysis [J]. Chinese General Practice, 2023, 26(32): 4089-4097. |
[3] | MA Liyuan, WANG Zengwu, FAN Jing, HU Shengshou. Interpretation of Report on Cardiovascular Health and Diseases in China 2022 [J]. Chinese General Practice, 2023, 26(32): 3975-3994. |
[4] | LI Yujing, JIN Yichao, CHEN Xing, JI Mengying, DAI Huihua. Risk Factors for Endometrial Lesions Detected by Hysteroscopy in Breast Cancer Patients Taking Tamoxifen [J]. Chinese General Practice, 2023, 26(32): 4026-4030. |
[5] | CHENG Xiaoran, ZHANG Xiaotian, LI Mingyue, CHENG Haozhe, TANG Haoqing, ZHENG Huixian, ZHANG Baisong, LIU Xiaoyun. Impact of Chronic Diseases Follow-up on Health Behaviors and Blood Pressure/Glucose Control of Patients with Hypertension and Diabetes in the Context of Treatment-prevention Integration [J]. Chinese General Practice, 2023, 26(28): 3482-3488. |
[6] | REN Yuanyuan, CHENG Gong, JIANG Hongying, WANG Yiyang, CHEN Liang, ZHAO Hui, LIANG Chenyuan. Analysis of Influencing Factors of Coronary Artery Calcification and Its Severity in Patients with Coronary Heart Disease [J]. Chinese General Practice, 2023, 26(24): 2980-2985. |
[7] | HE Manlan, YUAN Ping, HE Lei, CHEN Lu. Meta-analysis of Risk Factors for Urinary Tract Infection in Neurogenic Bladder [J]. Chinese General Practice, 2023, 26(21): 2659-2665. |
[8] | CHEN Long, ZENG Kai, LI Sha, TAO Lu, LIANG Wei, WANG Haocen, YANG Rumei. Causes and Countermeasures of Algorithmic Bias and Health Inequity [J]. Chinese General Practice, 2023, 26(19): 2423-2427. |
[9] | GUO Tianci, CHEN Jixin, YU Weijie, LIU Aifeng. Recent Developments in the Application of Artificial Intelligence in the Diagnosis and Treatment of Osteoarthritis [J]. Chinese General Practice, 2023, 26(19): 2428-2433. |
[10] | FENG Shuidong, LI Junyan, DENG Shuxiang, CHEN Limou, CAO Mengyue, TANG Yan, TANG Peng, LIU Jun, SHEN Minxue, YANG Fei. Association between Air Pollutant Exposure and Dyslipidemia in Middle-aged and Elderly People in Mining Areas [J]. Chinese General Practice, 2023, 26(18): 2238-2244. |
[11] | MA Yong, GAO Weibo, ZHU Jihong. Risk Factors of Thrombocytopenia Caused by Pyogenic Liver Abscess [J]. Chinese General Practice, 2023, 26(17): 2120-2124. |
[12] | SHEN Huiwen, LIN Yongzhong, CHEN Shuliang, ZHANG Lihong, MA Chunye, MA Deyuan, ZHANG Ce. Precise Thrombolytic Treatment for Stroke Using AI-based Algorithms: a Real-world Study [J]. Chinese General Practice, 2023, 26(17): 2070-2077,2088. |
[13] | XUE Jingru, SUN Suzhen. Clinical Characteristics and Risk Factors for Unfavourble Prognosis of Mycoplasma Pneumoniae Encephalitis in Children [J]. Chinese General Practice, 2023, 26(17): 2125-2131. |
[14] | WANG Hai, WANG Zhuoli, PEI Honghong, PAN Longfei. Analysis of Risk Factors and Exploration of Predictors of Serious Cases of COVID-19 in Xi'an during the Period of 2021-2022 [J]. Chinese General Practice, 2023, 26(17): 2132-2137. |
[15] | SHEN Aomei, LU Qian, FU Xin, WEI Xiaoxia, BIAN Jingru, ZHANG Liyuan, QIANG Wanmin, PANG Dong. Constructing a Risk Prediction Model of Breast Cancer-related Lymphedema Based on a Meta-analysis of Prospective Cohort Studies [J]. Chinese General Practice, 2023, 26(17): 2078-2088. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||