Chinese General Practice ›› 2022, Vol. 25 ›› Issue (08): 1014-1020.DOI: 10.12114/j.issn.1007-9572.2021.01.043
Special Issue: 儿科最新文章合集
• Latest Developments • Previous Articles Next Articles
Metabolomics in Childhood Asthma
1. Graduate School,Guangdong Medical University,Zhanjiang 524023,China
2. Children's Medical Center,Affiliated Hospital of Guangdong Medical University,Zhanjiang 524000,China
3. Institute of Marine Medicine,Guangdong Medical University,Zhanjiang 524023,China
*Corresponding author:HUANG Yuge,Professor;E-mail:Yug_Huang@163.com
Received:
2021-09-11
Revised:
2021-11-10
Published:
2022-03-15
Online:
2022-03-02
通讯作者:
黄宇戈
基金资助:
CLC Number:
WU Ruijian, HUANG Yuge, LUO Lianxiang.
Metabolomics in Childhood Asthma [J]. Chinese General Practice, 2022, 25(08): 1014-1020.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.chinagp.net/EN/10.12114/j.issn.1007-9572.2021.01.043
生物样本 | 生理特征 | 优点 | 缺点 | 注意事项 |
---|---|---|---|---|
血浆和血清 | 由不同组织根据不同的生理需要或压力而分泌、排泄或丢弃的所有分子组合[ | 提供瞬时代谢状态的综合视图,适用于大多数分析技术和平台[ | 有创,对气道生理缺乏特异性 | 血浆收集首选肝素,不建议使用柠檬酸盐,血清收集建议使用塑料或玻璃制成的普通无添加剂收集管[ |
呼出气 | 组成相对简单,同时包含挥发性和非挥发性分子 | 无创且易于获得,可重复,与气道生理有关,适合分析挥发性和非挥发性代谢物[ | 儿童人群难以采集样本,受运动、呼吸方式和速率、鼻污染、环境温度和湿度影响[ | 需要对样本进行预浓缩,需要高素质的技术人员和昂贵的设备 |
粪便 | 粪便由消化物质的残留物或代谢物、肠道菌群代谢物和人体代谢物组成 | 无创,易于收藏,可重复收集,代谢物代表宿主和肠道菌群之前的相互作用 | 与呼吸系统无直接关系,难以区分营养、内源和微生物群代谢产物 | 粪便样品具有高度的不均匀性,取样后在冰上将样品均匀化[ |
尿液 | 成分稳定,相对复杂程度不及血清和血浆,反映近端组织和血液灌注远处器官的生理和病理变化[ | 无创,方便儿科收集,可重复收集,成分丰富[ | 缺乏与气道生理的接近性和特异性,受饮食摄入影响[ | 建议禁食样本,建议晨起中段尿[ |
Table 1 Comparison of common samples for metabonomics analysis of childhood asthma
生物样本 | 生理特征 | 优点 | 缺点 | 注意事项 |
---|---|---|---|---|
血浆和血清 | 由不同组织根据不同的生理需要或压力而分泌、排泄或丢弃的所有分子组合[ | 提供瞬时代谢状态的综合视图,适用于大多数分析技术和平台[ | 有创,对气道生理缺乏特异性 | 血浆收集首选肝素,不建议使用柠檬酸盐,血清收集建议使用塑料或玻璃制成的普通无添加剂收集管[ |
呼出气 | 组成相对简单,同时包含挥发性和非挥发性分子 | 无创且易于获得,可重复,与气道生理有关,适合分析挥发性和非挥发性代谢物[ | 儿童人群难以采集样本,受运动、呼吸方式和速率、鼻污染、环境温度和湿度影响[ | 需要对样本进行预浓缩,需要高素质的技术人员和昂贵的设备 |
粪便 | 粪便由消化物质的残留物或代谢物、肠道菌群代谢物和人体代谢物组成 | 无创,易于收藏,可重复收集,代谢物代表宿主和肠道菌群之前的相互作用 | 与呼吸系统无直接关系,难以区分营养、内源和微生物群代谢产物 | 粪便样品具有高度的不均匀性,取样后在冰上将样品均匀化[ |
尿液 | 成分稳定,相对复杂程度不及血清和血浆,反映近端组织和血液灌注远处器官的生理和病理变化[ | 无创,方便儿科收集,可重复收集,成分丰富[ | 缺乏与气道生理的接近性和特异性,受饮食摄入影响[ | 建议禁食样本,建议晨起中段尿[ |
代谢物 | 机制 |
---|---|
短链脂肪酸:乙酸盐、丙酸盐、丁酸盐 | 直接激活G蛋白偶联受体(如GPR41、GPR43、GRP109A),抑制组蛋白脱乙酰基酶,作为能量底物[ |
多不饱和脂肪酸:omega-3脂肪酸(二十碳五烯酸和二十二碳六烯酸)、omega-6脂肪酸(亚油酸及其代谢物花生四烯酸) | 增加短链脂肪酸的产生,被人体肠道微生物代谢产生共轭亚油酸(CLA)和12,13-二羟基-9-十八烯酸(12,13-diHOME)。换行免疫失衡情况下,补充CLA能减少肿瘤坏死因子(TNF)-α、干扰素(IFN)-γ和白介素(IL)-5的产生以及嗜酸粒细胞来源神经毒素的释放[ |
胆汁酸:胆酸、鹅脱氧胆酸、脱氧胆酸、石胆酸、熊去氧胆酸 | 熊去氧胆酸通过连接树突状细胞的法尼醇X受体(FXR),促进IL-12的产生,促进树突状细胞的迁移,减少肺部嗜酸性气道炎症[ |
色氨酸:犬尿氨酸、5-羟色胺、褪黑激素、吲哚、吲哚酸、粪臭素、色胺 | 吲哚胺2,3-双加氧酶-1代谢色氨酸产生犬尿氨酸衍生物,通过降低色氨酸的利用率[ |
鞘脂:1-磷酸鞘氨醇、1-磷酸神经酰胺 | 1-磷酸鞘氨醇与T细胞表面S1P受体结合,控制T细胞从淋巴结进入血液[ |
Table 2 Roles of intestinal metabolites involved in the pathogenesis of childhood asthma
代谢物 | 机制 |
---|---|
短链脂肪酸:乙酸盐、丙酸盐、丁酸盐 | 直接激活G蛋白偶联受体(如GPR41、GPR43、GRP109A),抑制组蛋白脱乙酰基酶,作为能量底物[ |
多不饱和脂肪酸:omega-3脂肪酸(二十碳五烯酸和二十二碳六烯酸)、omega-6脂肪酸(亚油酸及其代谢物花生四烯酸) | 增加短链脂肪酸的产生,被人体肠道微生物代谢产生共轭亚油酸(CLA)和12,13-二羟基-9-十八烯酸(12,13-diHOME)。换行免疫失衡情况下,补充CLA能减少肿瘤坏死因子(TNF)-α、干扰素(IFN)-γ和白介素(IL)-5的产生以及嗜酸粒细胞来源神经毒素的释放[ |
胆汁酸:胆酸、鹅脱氧胆酸、脱氧胆酸、石胆酸、熊去氧胆酸 | 熊去氧胆酸通过连接树突状细胞的法尼醇X受体(FXR),促进IL-12的产生,促进树突状细胞的迁移,减少肺部嗜酸性气道炎症[ |
色氨酸:犬尿氨酸、5-羟色胺、褪黑激素、吲哚、吲哚酸、粪臭素、色胺 | 吲哚胺2,3-双加氧酶-1代谢色氨酸产生犬尿氨酸衍生物,通过降低色氨酸的利用率[ |
鞘脂:1-磷酸鞘氨醇、1-磷酸神经酰胺 | 1-磷酸鞘氨醇与T细胞表面S1P受体结合,控制T细胞从淋巴结进入血液[ |
[1] | BATEMAN E D, HURD S S, BARNES P J,et al. Global strategy for asthma management and prevention:GINA executive summary[J]. Eur Respir J,2008,31(1):143-178. DOI:10.1183/09031936.00138707. |
[2] | ASHER I, PEARCE N. Global burden of asthma among children[J]. Int J Tuberc Lung Dis,2014,18(11):1269-1278. DOI:10.5588/ijtld.14.0170. |
[3] | BEASLEY R, SEMPRINI A, MITCHELL E A. Risk factors for asthma:is prevention possible?[J]. Lancet,2015,386(9998):1075-1085. DOI:10.1016/s0140-6736(15)00156-7. |
[4] | 全国儿科哮喘协作组,中国疾病预防控制中心环境与健康相关产品安全所. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志,2013,51(10):729-735. DOI:10.3760/cma.j.issn.0578-1310.2013.10.003. |
[5] | JOHNSON C H, PATTERSON A D, IDLE J R,et al. Xenobiotic metabolomics:major impact on the metabolome[J]. Annu Rev Pharmacol Toxicol,2012,52:37-56. DOI:10.1146/annurev-pharmtox-010611-134748. |
[6] | XIAO M T, YANG H, XU W,et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors[J]. Genes Dev,2012,26(12):1326-1338. DOI:10.1101/gad.191056.112. |
[7] | YANG M, SU H Z, SOGA T,et al. Prolyl hydroxylase domain enzymes:important regulators of cancer metabolism[J]. Hypoxia (Auckl),2014,2:127-142. DOI:10.2147/HP.S47968. |
[8] | MORRIS C R, POLJAKOVIC M, LAVRISHA L,et al. Decreased arginine bioavailability and increased serum arginase activity in asthma[J]. Am J Respir Crit Care Med,2004,170(2):148-153. DOI:10.1164/rccm.200309-1304OC. |
[9] | MATYSIAK J, KLUPCZYNSKA A, PACKI K,et al. Alterations in serum-free amino acid profiles in childhood asthma[J]. Int J Environ Res Public Health,2020,17(13):E4758. DOI:10.3390/ijerph17134758. |
[10] | MORRIS C R. Arginine and asthma[J]. Nestle Nutr Inst Work Ser,2013,77:1-15. DOI:10.1159/000351365. |
[11] | ZHENG H, YDE C C, ARNBERG K,et al. NMR-based metabolomic profiling of overweight adolescents:an elucidation of the effects of inter-/intraindividual differences,gender,and pubertal development[J]. Biomed Res Int,2014,2014:537157. DOI:10.1155/2014/537157. |
[12] | HERTEL J, FRIEDRICH N, WITTFELD K,et al. Measuring biological age via metabonomics:the metabolic age score[J]. Proteome Res,2016,15(2):400-410. DOI:10.1021/acs.jproteome.5b00561. |
[13] | PITE H, AGUIAR L, MORELLO J,et al. Metabolic dysfunction and asthma:current perspectives[J]. J Asthma Allergy,2020,13:237-247. DOI:10.2147/JAA.S208823. |
[14] | BECKMANN M, LLOYD A J, HALDAR S,et al. Dietary exposure biomarker-lead discovery based on metabolomics analysis of urine samples[J]. Proc Nutr Soc,2013,72(3):352-361. DOI:10.1017/S0029665113001237. |
[15] | GRIFFIN J L, BOLLARD M E. Metabonomics:its potential as a tool in toxicology for safety assessment and data integration[J]. Curr Drug Metab,2004,5(5):389-398. DOI:10.2174/1389200043335432. |
[16] | FIEHN O. Metabolomics——the link between genotypes and phenotypes[J]. Plant Mol Biol,2002,48(1/2):155-171. |
[17] | ROBERTS L D, SOUZA A L, GERSZTEN R E,et al. Targeted metabolomics[J]. Curr Protoc Mol Biol,2012,Chapter 30:Unit30.2.1-30.224. DOI:10.1002/0471142727.mb3002s98. |
[18] | ALONSO A, MARSAL S, JULIÀ A. Analytical methods in untargeted metabolomics:state of the art in 2015[J]. Front Bioeng Biotechnol,2015,3:23. DOI:10.3389/fbioe.2015.00023. |
[19] | MARKLEY J L, BRÜSCHWEILER R, EDISON A S,et al. The future of NMR-based metabolomics[J]. Curr Opin Biotechnol,2017,43:34-40. DOI:10.1016/j.copbio.2016.08.001. |
[20] | DRAPER J, ENOT D P, PARKER D,et al. Metabolite signal identification in accurate mass metabolomics data with MZedDB,an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'[J]. BMC Bioinformatics,2009,10:227. DOI:10.1186/1471-2105-10-227. |
[21] | VEENSTRA T D. Metabolomics:the final frontier?[J]. Genome Med,2012,4(4):40. DOI:10.1186/gm339. |
[22] | THEODORIDIS G, GIKA H G, WILSON I D. Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies[J]. Mass Spectrom Rev,2011,30(5):884-906. DOI:10.1002/mas.20306. |
[23] | WISHART D S. Emerging applications of metabolomics in drug discovery and precision medicine[J]. Nat Rev Drug Discov,2016,15(7):473-484. DOI:10.1038/nrd.2016.32. |
[24] | PSYCHOGIOS N, HAU D D, PENG J,et al. The human serum metabolome[J]. PLoS One,2011,6(2):e16957. DOI:10.1371/journal.pone.0016957. |
[25] | ZHANG A H, SUN H, WANG X J. Serum metabolomics as a novel diagnostic approach for disease:a systematic review[J]. Anal Bioanal Chem,2012,404(4):1239-1245. DOI:10.1007/s00216-012-6117-1. |
[26] | BARRI T, DRAGSTED L O. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics:effect of experimental artefacts and anticoagulant[J]. Anal Chim Acta,2013,768:118-128. DOI:10.1016/j.aca.2013.01.015. |
[27] | KUBÁN P, FORET F. Exhaled breath condensate:determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review[J]. Anal Chim Acta,2013,805:1-18. DOI:10.1016/j.aca.2013.07.049. |
[28] | AHMADZAI H, HUANG S Y, HETTIARACHCHI R,et al. Exhaled breath condensate:a comprehensive update[J]. Clin Chem Lab Med,2013,51(7):1343-1361. DOI:10.1515/cclm-2012-0593. |
[29] | GRATTON J, PHETCHARABURANIN J, MULLISH B H,et al. Optimized sample handling strategy for metabolic profiling of human feces[J]. Anal Chem,2016,88(9):4661-4668. DOI:10.1021/acs.analchem.5b04159. |
[30] | WU J Q, GAO Y H. Physiological conditions can be reflected in human urine proteome and metabolome[J]. Expert Rev Proteomics,2015,12(6):623-636. DOI:10.1586/14789450.2015.1094380. |
[31] | EMWAS A H, ROY R, MCKAY R T,et al. Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis[J]. J Proteome Res,2016,15(2):360-373. DOI:10.1021/acs.jproteome.5b00885. |
[32] | WALSH M C, BRENNAN L, MALTHOUSE J P,et al. Effect of acute dietary standardization on the urinary,plasma,and salivary metabolomic profiles of healthy humans[J]. Am J Clin Nutr,2006,84(3):531-539. DOI:10.1093/ajcn/84.3.531. |
[33] | YU Z H, KASTENMÜLLER G, HE Y,et al. Differences between human plasma and serum metabolite profiles[J]. PLoS One,2011,6(7):e21230. DOI:10.1371/journal.pone.0021230. |
[34] | BREIER M, WAHL S, PREHN C,et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples[J]. PLoS One,2014,9(2):e89728. DOI:10.1371/journal.pone.0089728. |
[35] | CHECKLEY W, DEZA M P, KLAWITTER J,et al. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches[J]. Respir Med,2016,121:59-66. DOI:10.1016/j.rmed.2016.10.011. |
[36] | REYNAERT N L. Glutathione biochemistry in asthma[J]. Biochim Biophys Acta,2011,1810(11):1045-1051. DOI:10.1016/j.bbagen.2011.01.010. |
[37] | FITZPATRICK A M, PARK Y, BROWN L A,et al. Children with severe asthma have unique oxidative stress-associated metabolomic profiles[J]. J Allergy Clin Immunol,2014,133(1):258-261.e1-8. DOI:10.1016/j.jaci.2013.10.012. |
[38] | FITZPATRICK A M, TEAGUE W G, BURWELL L,et al. Glutathione oxidation is associated with airway macrophage functional impairment in children with severe asthma[J]. Pediatr Res,2011,69(2):154-159. DOI:10.1203/PDR.0b013e3182026370. |
[39] | FITZPATRICK A M, TEAGUE W G, HOLGUIN F,et al. Airway glutathione homeostasis is altered in children with severe asthma:evidence for oxidant stress[J]. J Allergy Clin Immunol,2009,123(1):146-152.e8. DOI:10.1016/j.jaci.2008.10.047. |
[40] | FITZPATRICK A M, STEPHENSON S T, HADLEY G R,et al. Thiol redox disturbances in children with severe asthma are associated with posttranslational modification of the transcription factor nuclear factor (erythroid-derived 2)-like 2[J]. J Allergy Clin Immunol,2011,127(6):1604-1611. DOI:10.1016/j.jaci.2011.03.031. |
[41] | COMHAIR S A, RICCI K S, ARROLIGA M,et al. Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma[J]. Am J Respir Crit Care Med,2005,172(3):306-313. DOI:10.1164/rccm.200502-180OC. |
[42] | KHATRI S B, PEABODY J, BURWELL L,et al. Systemic antioxidants and lung function in asthmatics during high ozone season:a closer look at albumin,glutathione,and associations with lung function[J]. Clin Transl Sci,2014,7(4):314-318. DOI:10.1111/cts.12152. |
[43] | NADEEM A, CHHABRA S K, MASOOD A,et al. Increased oxidative stress and altered levels of antioxidants in asthma[J]. J Allergy Clin Immunol,2003,111(1):72-78. DOI:10.1067/mai.2003.17. |
[44] | NEERINCX A H, VIJVERBERG S J H, BOS L D J,et al. Breathomics from exhaled volatile organic compounds in pediatric asthma[J]. Pediatr Pulmonol,2017,52(12):1616-1627. DOI:10.1002/ppul.23785. |
[45] | ROBROEKS C M, VAN BERKEL J J, JÖBSIS Q,et al. Exhaled volatile organic compounds predict exacerbations of childhood asthma in a 1-year prospective study[J]. Eur Respir J,2013,42(1):98-106. DOI:10.1183/09031936.00010712. |
[46] | VAN VLIET D, SMOLINSKA A, JÖBSIS Q,et al. Can exhaled volatile organic compounds predict asthma exacerbations in children?[J]. J Breath Res,2017,11(1):016016. DOI:10.1088/1752-7163/aa5a8b. |
[47] | CORRADI M, FOLESANI G, ANDREOLI R,et al. Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation[J]. Am J Respir Crit Care Med,2003,167(3):395-399. DOI:10.1164/rccm.200206-507OC. |
[48] | PRYOR W A, GODBER S S. Noninvasive measures of oxidative stress status in humans[J]. Free Radic Biol Med,1991,10(3/4):177-184. DOI:10.1016/0891-5849(91)90073-c. |
[49] | AMANN A, COSTELLO BDE L, MIEKISCH W,et al. The human volatilome:volatile organic compounds (VOCs) in exhaled breath,skin emanations,urine,feces and saliva[J]. J Breath Res,2014,8(3):034001. DOI:10.1088/1752-7155/8/3/034001. |
[50] | BRINKMAN P, VAN DE POL M A, GERRITSEN M G,et al. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma[J]. Clin Exp Allergy,2017,47(9):1159-1169. DOI:10.1111/cea.12965. |
[51] | VAN DER SCHEE M P, PALMAY R, COWAN J O,et al. Predicting steroid responsiveness in patients with asthma using exhaled breath profiling[J]. Clin Exp Allergy,2013,43(11):1217-1225. DOI:10.1111/cea.12147. |
[52] | LAMICHHANE S, SEN P, DICKENS A M,et al. Gut metabolome meets microbiome:a methodological perspective to understand the relationship between host and microbe[J]. Methods,2018,149:3-12. DOI:10.1016/j.ymeth.2018.04.029. |
[53] | HUANG Y J, BOUSHEY H A. The microbiome in asthma[J]. J Allergy Clin Immunol,2015,135(1):25-30. DOI:10.1016/j.jaci.2014.11.011. |
[54] | CHIU C Y, CHENG M L, CHIANG M H,et al. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma[J]. Pediatr Allergy Immunol,2019,30(7):689-697. DOI:10.1111/pai.13096. |
[55] | THEILER A, BÄRNTHALER T, PLATZER W,et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival[J]. J Allergy Clin Immunol,2019,144(3):764-776. DOI:10.1016/j.jaci.2019.05.002. |
[56] | RODUIT C, FREI R, FERSTL R,et al. High levels of butyrate and propionate in early life are associated with protection against atopy[J]. Allergy,2019,74(4):799-809. DOI:10.1111/all.13660. |
[57] | DONOHOE D R, GARGE N, ZHANG X X,et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab,2011,13(5):517-526. DOI:10.1016/j.cmet.2011.02.018. |
[58] | THIO C L, CHI P Y, LAI A C,et al. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate[J]. J Allergy Clin Immunol,2018,142(6):1867-1883.e12. DOI:10.1016/j.jaci.2018.02.032. |
[59] | THEILER A, BÄRNTHALER T, PLATZER W,et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival[J]. J Allergy Clin Immunol,2019,144(3):764-776. DOI:10.1016/j.jaci.2019.05.002. |
[60] | LIAO H Y, TAO L, ZHAO J,et al. Clostridium butyricum in combination with specific immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients[J]. Sci Rep,2016,6:20481. DOI:10.1038/srep20481. |
[61] | TEDDER T F. B10 cells:a functionally defined regulatory B cell subset[J]. J Immunol,2015,194(4):1395-1401. DOI:10.4049/jimmunol.1401329. |
[62] | KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P,et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332-1345. DOI:10.1016/j.cell.2016.05.041. |
[63] | KIM M, QIE Y Q, PARK J,et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host Microbe,2016,20(2):202-214. DOI:10.1016/j.chom.2016.07.001. |
[64] | TURPEINEN A M, YLÖNEN N, VON WILLEBRAND E,et al. Immunological and metabolic effects of Cis-9,trans-11-conjugated linoleic acid in subjects with birch pollen allergy[J]. Br J Nutr,2008,100(1):112-119. DOI:10.1017/S0007114507886326. |
[65] | LEVAN S R, STAMNES K A, LIN D L,et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance[J]. Nat Microbiol,2019,4(11):1851-1861. DOI:10.1038/s41564-019-0498-2. |
[66] | YAMAZAKI K, SUZUKI K, NAKAMURA A,et al. Ursodeoxycholic acid inhibits eosinophil degranulation in patients with primary biliary cirrhosis[J]. Hepatology,1999,30(1):71-78. DOI:10.1002/hep.510300121. |
[67] | SHAIK F B, PANATI K, NARASIMHA V R,et al. Chenodeoxycholic acid attenuates ovalbumin-induced airway inflammation in murine model of asthma by inhibiting the T(H)2 cytokines[J]. Biochem Biophys Res Commun,2015,463(4):600-605. DOI:10.1016/j.bbrc.2015.05.104. |
[68] | MUNN D H, SHAFIZADEH E, ATTWOOD J T,et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism[J]. J Exp Med,1999,189(9):1363-1372. DOI:10.1084/jem.189.9.1363. |
[69] | FALLARINO F, GROHMANN U, YOU S,et al. Tryptophan catabolism generates autoimmune-preventive regulatory T cells[J]. Transpl Immunol,2006,17(1):58-60. DOI:10.1016/j.trim.2006.09.017. |
[70] | CHENG Y T, JIN U H, ALLRED C D,et al. Aryl hydrocarbon receptor activity of tryptophan metabolites in young adult mouse colonocytes[J]. Drug Metab Dispos,2015,43(10):1536-1543. DOI:10.1124/dmd.115.063677. |
[71] | ETTMAYER P, MAYER P, KALTHOFF F,et al. A novel low molecular weight inhibitor of dendritic cells and B cells blocks allergic inflammation[J]. Am J Respir Crit Care Med,2006,173(6):599-606. DOI:10.1164/rccm.200503-468OC. |
[72] | QUINTANA F J, BASSO A S, IGLESIAS A H,et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature,2008,453(7191):65-71. DOI:10.1038/nature06880. |
[73] | ALLENDE M L, DREIER J L, MANDALA S,et al. Expression of the sphingosine 1-phosphate receptor,S1P1,on T-cells controls thymic emigration[J]. J Biol Chem,2004,279(15):15396-15401. DOI:10.1074/jbc.M314291200. |
[74] | WORGALL T S, VEERAPPAN A, SUNG B,et al. Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity[J]. Sci Transl Med,2013,5(186):186ra67. DOI:10.1126/scitranslmed.3005765. |
[75] | KHAMIS M M, ADAMKO D J, EL-ANEED A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery[J]. Mass Spectrom Rev,2017,36(2):115-134. DOI:10.1002/mas.21455. |
[76] | SAUDE E J, SKAPPAK C D, REGUSH S,et al. Metabolomic profiling of asthma:diagnostic utility of urine nuclear magnetic resonance spectroscopy[J]. J Allergy Clin Immunol,2011,127(3):757-764.e1-6. DOI:10.1016/j.jaci.2010.12.1077. |
[77] | CHAWES B L, GIORDANO G, PIRILLO P,et al. Neonatal urine metabolic profiling and development of childhood asthma[J]. Metabolites,2019,9(9):E185. DOI:10.3390/metabo9090185. |
[78] | CHIU C Y, LIN G, CHENG M L,et al. Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood[J]. Pediatr Allergy Immunol,2018,29(5):496-503. DOI:10.1111/pai.12909. |
[79] | TURI K N, ROMICK-ROSENDALE L, GEBRETSADIK T,et al. Using urine metabolomics to understand the pathogenesis of infant respiratory syncytial virus (RSV) infection and its role in childhood wheezing[J]. Metabolomics,2018,14(10):135. DOI:10.1007/s11306-018-1431-z. |
[80] | ADAMKO D J, NAIR P, MAYERS I,et al. Metabolomic profiling of asthma and chronic obstructive pulmonary disease:a pilot study differentiating diseases[J]. J Allergy Clin Immunol,2015,136(3):571-580.e3. DOI:10.1016/j.jaci.2015.05.022. |
[81] | BÖGER R H. Asymmetric dimethylarginine,an endogenous inhibitor of nitric oxide synthase,explains the "L-arginine paradox" and Acts as a novel cardiovascular risk factor[J]. J Nutr,2004,134(10 ):2842S-2847S;discussion2853S. DOI:10.1093/jn/134.10.2842S. |
[82] | KOSKELA H O, SALONEN P H, NISKANEN L. Hyperglycaemia during exacerbations of asthma and chronic obstructive pulmonary disease[J]. Clin Respir J,2013,7(4):382-389. DOI:10.1111/crj.12020. |
[83] | BEKIER E, WYCZÓLKOWSKA J, SZYC H,et al. The inhibitory effect of nicotinamide on asthma-like symptoms and eosinophilia in Guinea pigs,anaphylactic mast cell degranulation in mice,and histamine release from rat isolated peritoneal mast cells by compound 48-80[J]. Int Arch Allergy Appl Immunol,1974,47(5):737-748. DOI:10.1159/000231265. |
[84] | KELLY R S, DAHLIN A, MCGEACHIE M J,et al. Asthma metabolomics and the potential for integrative omics in research and the clinic[J]. Chest,2017,151(2):262-277. DOI:10.1016/j.chest.2016.10.008. |
[85] | GISKEØDEGÅRD G F, DAVIES S K, REVELL V L,et al. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation[J]. Sci Rep,2015,5:14843. DOI:10.1038/srep14843. |
[86] | ANWAR M A, VORKAS P A, LI J V,et al. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based untargeted metabolic profiling[J]. Analyst,2015,140(22):7586-7597. DOI:10.1039/c5an01041a. |
[87] | YIN P Y, LEHMANN R, XU G W. Effects of pre-analytical processes on blood samples used in metabolomics studies[J]. Anal Bioanal Chem,2015,407(17):4879-4892. DOI:10.1007/s00216-015-8565-x. |
[88] | NAZ S, GARCÍA A, BARBAS C. Multiplatform analytical methodology for metabolic fingerprinting of lung tissue[J]. Anal Chem,2013,85(22):10941-10948. DOI:10.1021/ac402411n. |
[89] | HASIN Y, SELDIN M, LUSIS A. Multi-omics approaches to disease[J]. Genome Biol,2017,18(1):83. DOI:10.1186/s13059-017-1215-1. |
[90] | HAAS R, ZELEZNIAK A, IACOVACCI J,et al. Designing and interpreting 'multi-omic' experiments that may change our understanding of biology[J]. Curr Opin Syst Biol,2017,6:37-45. DOI:10.1016/j.coisb.2017.08.009. |
[1] | LIANG Xuan, NA Feiyang, QIN Mengyao, YANG Hui, GUO Li, GUO Qi, REN Lei, CHEN De, LIU Donghai, ZHANG Rongfang. Clinical Characteristics and Influencing Factors of Bronchial Asthma Combined with Obstructive Sleep Apnea-hypopnea Syndrome in Children [J]. Chinese General Practice, 2023, 26(33): 4225-4230. |
[2] | YIN Zhaoxia, MAO Lidong, ZHANG Baoshuang, HUANG Yin, FENG Yang, WANG Yunfei. Spectrum of Outpatient Illnesses in Children Contracting Family Doctor Services in Shenzhen's Community Settings and Related Implications for Standardized Residency Training of General Practitioners [J]. Chinese General Practice, 2023, 26(33): 4218-4224. |
[3] | WANG Xu, WEI Xu, ZHU Liguo, FENG Tianxiao, WANG Zhipeng, SHI Bin. Research Ideas of the Efficacy Mechanism and Prospect Analysis of Traditional Chinese Manipulative Therapy on Treating Spinal Degenerative Diseases with Combination of Medicine and Industry [J]. Chinese General Practice, 2023, 26(33): 4118-4124. |
[4] | XIN Gongkai, CONG Xin, YUAN Lei, CHENG Yuetong, NI Cuiping, ZHANG Weiwei, ZHANG Pingping, LIU Yu. Research Progress on Comprehensive Assessment Tools for the Elderly with Dementia [J]. Chinese General Practice, 2023, 26(33): 4103-4109. |
[5] | ZHANG Siyu, ZHOU Yuqiu, DU Xiaohui, WANG Zhengjun. Advances in Duration of Untreated Psychosis and Its Early Intervention [J]. Chinese General Practice, 2023, 26(33): 4110-4117. |
[6] | MENG Jiangtao, YANG Siyu, SUN Lei, LEI Ruining, ZHAO Xiaoxia. Advances in the Prognostic Value of Diffusion Tensor Imaging with Motor Evoked Potential for Motor Function in Cerebral Infarction Patients with Hemiplegia [J]. Chinese General Practice, 2023, 26(32): 4098-4102. |
[7] | WANG Jiaxin, ZHAO Yali. Domestic and International Assessment Tools for Medical Teamwork: a Systematic Review [J]. Chinese General Practice, 2023, 26(31): 3951-3962. |
[8] | WEI Mengyu, WANG Jiajia, ZHANG Yingying, LI Chunyang, LI Jiansheng. Research Status of Patient-reported Outcome Assessment Tools for Obstructive Sleep Apnea [J]. Chinese General Practice, 2023, 26(30): 3725-3733. |
[9] | YUAN Xiwei, NAN Yuemin. Research Progress of Structure, Function and Mechanism of Action of Mitofusin 2 in Liver Diseases [J]. Chinese General Practice, 2023, 26(30): 3841-3846. |
[10] | SHI Xiaoqi, LUO Nandu, HUANG Jiaojiao, DU Zuochen, HUANG Pei, CAO Xiuli, CHEN Yan, HE Zhixu. Correlation between Aspartate Aminotransferase/Alanine Aminotransferase and Prognosis of Hemophagocytic Lymphohistiocytosis in Children [J]. Chinese General Practice, 2023, 26(30): 3801-3808. |
[11] | CHENG Jingwei, QIAO Junjun, YIN Zhen, HU Junpeng, WANG Qinghe, LIU Yangqing, WANG Yanfang. Interpretation of ISPAD Clinical Practice Consensus Guidelines 2022: Exercise in Children and Adolescents with Diabetes [J]. Chinese General Practice, 2023, 26(30): 3719-3724. |
[12] | XIAO Yuqian, BAI Yanjie, WANG Yan, CHEN Shuying, CHEN Limin, SUN Kexin, WAN Jun. Research Progress of Mitochondrial Transfer in Post-stroke Cognitive Impairment [J]. Chinese General Practice, 2023, 26(30): 3833-3840. |
[13] | LIU Yu, YUE Ting, YANG Dongyu, ZHAO Zhongting, YANG Jibo, ZHU Tiantian. Research Progress on Mechanism of Autophagy in the Pathogenesis of Rheumatoid Arthritis [J]. Chinese General Practice, 2023, 26(29): 3710-3714. |
[14] | PU Yu, ZHANG Jixiang, DONG Weiguo. Advances in Ferroptosis and Inflammatory Bowel Disease [J]. Chinese General Practice, 2023, 26(29): 3698-3703. |
[15] | REN Yanfeng, LIU Shimeng, TAO Ying, CHEN Yingyao. A Systematic Review of Medication Preferences for Patients with Depression Based on Discrete Choice Experiment and Best-worst Scaling [J]. Chinese General Practice, 2023, 26(28): 3559-3564. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||