[1] |
|
[2] |
DIXON S J, LEMBERG K M, LAMPRECHT M R,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042.
|
[3] |
MOU Y H, WANG J, WU J C,et al. Ferroptosis,a new form of cell death:opportunities and challenges in cancer[J]. J Hematol Oncol, 2019, 12(1):34. DOI: 10.1186/s13045-019-0720-y.
|
[4] |
YAN H F, ZOU T, TUO Q Z,et al. Ferroptosis:mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1):49. DOI: 10.1038/s41392-020-00428-9.
|
[5] |
STOCKWELL B R, FRIEDMANN ANGELI J P, BAYIR H,et al. Ferroptosis:a regulated cell death nexus linking metabolism,redox biology,and disease[J]. Cell, 2017, 171(2):273-285. DOI: 10.1016/j.cell.2017.09.021.
|
[6] |
WANG Z H, GUO R, TRUDEAU S J,et al. CYB561A3 is the key lysosomal iron reductase required for Burkitt B-cell growth and survival[J]. Blood, 2021, 138(22):2216-2230. DOI: 10.1182/blood.2021011079.
|
[7] |
MENG F J, FLEMING B A, JIA X,et al. Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases[J]. Blood Adv, 2022, 6(6):1692-1707. DOI: 10.1182/bloodadvances.2021005609.
|
[8] |
MUCKENTHALER M U, RIVELLA S, HENTZE M W,et al. A red carpet for iron metabolism[J]. Cell, 2017, 168(3):344-361. DOI: 10.1016/j.cell.2016.12.034.
|
[9] |
BROWN C W, AMANTE J J, CHHOY P,et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Dev Cell, 2019, 51(5):575-586.e4. DOI: 10.1016/j.devcel.2019.10.007.
|
[10] |
VALI S W, LINDAHL P A. Might nontransferrin-bound iron in blood plasma and sera be a nonproteinaceous high-molecular-mass Fe Ⅲ aggregate?[J]. J Biol Chem, 2022, 298(12):102667. DOI: 10.1016/j.jbc.2022.102667.
|
[11] |
KAGAN V E, MAO G W, QU F,et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1):81-90. DOI: 10.1038/nchembio.2238.
|
[12] |
DOLL S, PRONETH B, TYURINA Y Y,et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98. DOI: 10.1038/nchembio.2239.
|
[13] |
YANG W S, KIM K J, GASCHLER M M,et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci USA, 2016, 113(34):E4966-4975. DOI: 10.1073/pnas.1603244113.
|
[14] |
CHENG Y F, ZAK O, AISEN P,et al. Structure of the human transferrin receptor-transferrin complex[J]. Cell, 2004, 116(4):565-576. DOI: 10.1016/s0092-8674(04)00130-8.
|
[15] |
LEI P X, BAI T, SUN Y L. Mechanisms of ferroptosis and relations with regulated cell death:a review[J]. Front Physiol, 2019, 10:139. DOI: 10.3389/fphys.2019.00139.
|
[16] |
MAO C, LIU X G, ZHANG Y L,et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860):586-590. DOI: 10.1038/s41586-021-03539-7.
|
[17] |
KRAFT V A N, BEZJIAN C T, PFEIFFER S,et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1):41-53. DOI: 10.1021/acscentsci.9b01063.
|
[18] |
BERSUKER K, HENDRICKS J M, LI Z P,et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784):688-692. DOI: 10.1038/s41586-019-1705-2.
|
[19] |
WANG W M, GREEN M, CHOI J E,et al. CD 8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755):270-274. DOI: 10.1038/s41586-019-1170-y.
|
[20] |
JIANG L, KON N, LI T Y,et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545):57-62. DOI: 10.1038/nature14344.
|
[21] |
CHEN D L, TAVANA O, CHU B,et al. NRF2 is a major target of ARF in p53-independent tumor suppression[J]. Mol Cell, 2017, 68(1):224-232.e4. DOI: 10.1016/j.molcel.2017.09.009.
|
[22] |
DOLL S, FREITAS F P, SHAH R,et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784):693-698. DOI: 10.1038/s41586-019-1707-0.
|
[23] |
MISHIMA E, NAKAMURA T, ZHENG J S,et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition[J]. Nature, 2023, 619(7968):E9-18. DOI: 10.1038/s41586-023-06269-0.
|
[24] |
WU X, WAN T, GAO X Y,et al. Microglia pyroptosis:a candidate target for neurological diseases treatment[J]. Front Neurosci, 2022, 16:922331. DOI: 10.3389/fnins.2022.922331.
|
[25] |
SÁNCHEZ-SARASÚA S, FERNÁNDEZ-PÉREZ I, ESPINOSA-FERNÁNDEZ V,et al. Can we treat neuroinflammation in Alzheimer's disease?[J]. Int J Mol Sci, 2020, 21(22):8751. DOI: 10.3390/ijms21228751.
|
[26] |
HANSLIK K L, ULLAND T K. The role of microglia and the Nlrp3 inflammasome in Alzheimer's disease[J]. Front Neurol, 2020, 11:570711. DOI: 10.3389/fneur.2020.570711.
|
[27] |
DIETRICH R B, JR BRADLEY W G. Iron accumulation in the basal Ganglia following severe ischemic-anoxic insults in children[J]. Radiology, 1988, 168(1):203-206. DOI: 10.1148/radiology.168.1.3380958.
|
[28] |
|
[29] |
SINGHAL R, MITTA S R, DAS N K,et al. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron[J]. J Clin Invest, 2021, 131(12):e143691. DOI: 10.1172/JCI143691.
|
[30] |
ZHANG H, HE Y, WANG J X,et al. MiR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol, 2020, 29:101402. DOI: 10.1016/j.redox.2019.101402.
|
[31] |
SILVA A M N, RANGEL M. The(bio)chemistry of non-transferrin-bound iron[J]. Molecules, 2022, 27(6):1784. DOI: 10.3390/molecules27061784.
|
[32] |
WANG Y F, WU Y N, LI T,et al. Iron metabolism and brain development in premature infants[J]. Front Physiol, 2019, 10:463. DOI: 10.3389/fphys.2019.00463.
|
[33] |
MIYAMOTO H D, IKEDA M, IDE T,et al. Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury[J]. JACC Basic Transl Sci, 2022, 7(8):800-819. DOI: 10.1016/j.jacbts.2022.03.012.
|
[34] |
TANG L J, ZHOU Y J, XIONG X M,et al. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion[J]. Free Radic Biol Med, 2021, 162:339-352. DOI: 10.1016/j.freeradbiomed.2020.10.307.
|
[35] |
NOOR J I, IKEDA T, UEDA Y,et al. A free radical scavenger,edaravone,inhibits lipid peroxidation and the production of nitric oxide in hypoxic-ischemic brain damage of neonatal rats[J]. Am J Obstet Gynecol, 2005, 193(5):1703-1708. DOI: 10.1016/j.ajog.2005.03.069.
|
[36] |
CHEN S J, ZHANG J, ZHOU T,et al. Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via m 5C modification of SLC7A11 mRNA[J]. Redox Biol, 2024, 69:102975. DOI: 10.1016/j.redox.2023.102975.
|
[37] |
ZHU H, HAN X, JI D F,et al. Estrogen inhibits lipid peroxidation after hypoxic-ischemic brain damage in neonatal rats[J]. Neural Regen Res, 2012, 7(31):2424-2431. DOI: 10.3969/j.issn.1673-5374.2012.31.003.
|
[38] |
EL BANA S M, MAHER S E, GABER A F,et al. Serum and urinary malondialdehyde(MDA),uric acid,and protein as markers of perinatal asphyxia[J]. Electron Physician, 2016, 8(7):2614-2619. DOI: 10.19082/2614.
|
[39] |
SHIBASAKI J, AIDA N, MORISAKI N,et al. Changes in brain metabolite concentrations after neonatal hypoxic-ischemic encephalopathy[J]. Radiology, 2018, 288(3):840-848. DOI: 10.1148/radiol.2018172083.
|
[40] |
BERGER R, GARNIER Y. Perinatal brain injury[J]. J Perinat Med, 2000, 28(4):261-285. DOI: 10.1515/jpm.2000.034.
|
[41] |
LAI P C, HUANG Y T, WU C C,et al. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats[J]. J Biomed Sci, 2011, 18(1):69. DOI: 10.1186/1423-0127-18-69.
|
[42] |
YANG Z, SU W, WEI X Y,et al. HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1[J]. Cell Rep, 2023, 42(8):112945. DOI: 10.1016/j.celrep.2023.112945.
|
[43] |
LIN W, ZHANG T L, ZHENG J Y,et al. Ferroptosis is involved in hypoxic-ischemic brain damage in neonatal rats[J]. Neuroscience, 2022, 487:131-142. DOI: 10.1016/j.neuroscience.2022.02.013.
|
[44] |
ZHU K Y, ZHU X, SUN S H,et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats[J]. Exp Neurol, 2021, 345:113828. DOI: 10.1016/j.expneurol.2021.113828.
|
[45] |
TANG Z, CHENG S W, SUN Y Y,et al. Early TLR4 inhibition reduces hippocampal injury at puberty in a rat model of neonatal hypoxic-ischemic brain damage via regulation of neuroimmunity and synaptic plasticity[J]. Exp Neurol, 2019, 321:113039. DOI: 10.1016/j.expneurol.2019.113039.
|
[46] |
FRICKER M, TOLKOVSKY A M, BORUTAITE V,et al. Neuronal cell death[J]. Physiol Rev, 2018, 98(2):813-880. DOI: 10.1152/physrev.00011.2017.
|
[47] |
MANGALMURTI A, LUKENS J R. How neurons die in Alzheimer's disease:implications for neuroinflammation[J]. Curr Opin Neurobiol, 2022, 75:102575. DOI: 10.1016/j.conb.2022.102575.
|
[48] |
RATHNASAMY G, LING E G, KAUR C. Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species[J]. J Neurosci, 2011, 31(49):17982-17995. DOI: 10.1523/JNEUROSCI.2250-11.2011.
|
[49] |
FERNÁNDEZ-MENDÍVIL C, LUENGO E, TRIGO-ALONSO P,et al. Protective role of microglial HO-1 blockade in aging:implication of iron metabolism[J]. Redox Biol, 2021, 38:101789. DOI: 10.1016/j.redox.2020.101789.
|
[50] |
CUI Y, ZHANG Y, ZHAO X L,et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[J]. Brain Behav Immun, 2021, 93:312-321. DOI: 10.1016/j.bbi.2021.01.003.
|
[51] |
WANG Y, ZHANG M H, BI R,et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury[J]. Redox Biol, 2022, 51:102262. DOI: 10.1016/j.redox.2022.102262.
|
[52] |
RYAN S K, ZELIC M, HAN Y N,et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration[J]. Nat Neurosci, 2023, 26(1):12-26. DOI: 10.1038/s41593-022-01221-3.
|
[53] |
YU H Y, CHANG Q, SUN T,et al. Metabolic reprogramming and polarization of microglia in Parkinson's disease:role of inflammasome and iron[J]. Ageing Res Rev, 2023, 90:102032. DOI: 10.1016/j.arr.2023.102032.
|
[54] |
KAPRALOV A A, YANG Q, DAR H H,et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death[J]. Nat Chem Biol, 2020, 16(3):278-290. DOI: 10.1038/s41589-019-0462-8.
|
[55] |
GAO S Q, ZHOU L Z, LU J N,et al. Cepharanthine attenuates early brain injury after subarachnoid hemorrhage in mice via inhibiting 15-lipoxygenase-1-mediated microglia and endothelial cell ferroptosis[J]. Oxid Med Cell Longev, 2022, 2022:4295208. DOI: 10.1155/2022/4295208.
|
[56] |
KENNY E M, FIDAN E, YANG Q,et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury[J]. Crit Care Med, 2019, 47(3):410-418. DOI: 10.1097/CCM.0000000000003555.
|
[57] |
AGUIRRE C A, CONCETTA MORALE M, PENG Q,et al. Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson's disease increase cellular susceptibility to oxidative stress[J]. Brain Behav Immun, 2020, 88:920-924. DOI: 10.1016/j.bbi.2020.04.007.
|
[58] |
JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis:mechanisms,biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4):266-282. DOI: 10.1038/s41580-020-00324-8.
|
[59] |
GOU Z X, SU X J, HU X,et al. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway[J]. Brain Res Bull, 2020, 163:40-48. DOI: 10.1016/j.brainresbull.2020.07.011.
|
[60] |
ZHU K Y, ZHU X, LIU S Q,et al. Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the HMGB1/GPX4 pathway[J]. Oxid Med Cell Longev, 2022, 2022:8438528. DOI: 10.1155/2022/8438528.
|
[61] |
LI C, WU Z Y, XUE H,et al. Ferroptosis contributes to hypoxic-ischemic brain injury in neonatal rats:role of the SIRT1/Nrf2/GPx4 signaling pathway[J]. CNS Neurosci Ther, 2022, 28(12):2268-2280. DOI: 10.1111/cns.13973.
|
[62] |
YANG S X, XIE Z P, PEI T T,et al. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1-42-induced Alzheimer's disease mice and glutamate-injured HT22 cells[J]. Chin Med, 2022, 17(1):82. DOI: 10.1186/s13020-022-00634-3.
|
[63] |
MISHIMA E, ITO J, WU Z J,et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor[J]. Nature, 2022, 608(7924):778-783. DOI: 10.1038/s41586-022-05022-3.
|