[1] |
CREA F. Challenges in the prevention of cardiovascular diseases:traditional and non-traditional risk factors[J]. Eur Heart J, 2021, 42(21):2025-2029. DOI: 10.1093/eurheartj/ehab296.
|
[2] |
VALENZUELA P L, RUILOPE L M, SANTOS-LOZANO A, et al. Exercise benefits in cardiovascular diseases:from mechanisms to clinical implementation[J]. Eur Heart J, 2023, 44(21):1874-1889. DOI: 10.1093/eurheartj/ehad170.
|
[3] |
LAVIE C J. Progress in cardiovascular diseases statistics 2022[J]. Prog Cardiovasc Dis, 2022, 73:94-95. DOI: 10.1016/j.pcad.2022.08.005.
|
[4] |
|
[5] |
ARMOUNDAS A A, NARAYAN S M, ARNETT D K, et al. Use of artificial intelligence in improving outcomes in heart disease:a scientific statement from the American Heart Association[J]. Circulation, 2024, 149(14):e1028-1050. DOI: 10.1161/CIR.0000000000001201.
|
[6] |
WEIKERT T, FRANCONE M, ABBARA S, et al. Machine learning in cardiovascular radiology:ESCR position statement on design requirements,quality assessment,current applications,opportunities,and challenges[J]. Eur Radiol, 2021, 31(6):3909-3922. DOI: 10.1007/s00330-020-07417-0.
|
[7] |
VAN DEN OEVER L B, VONDER M, VAN ASSEN M, et al. Application of artificial intelligence in cardiac CT:from basics to clinical practice[J]. Eur J Radiol, 2020, 128:108969. DOI: 10.1016/j.ejrad.2020.108969.
|
[8] |
RAU A, SOSCHYNSKI M, TARON J, et al. Artificial intelligence and radiomics:value in cardiac MRI[J]. Radiologie, 2022, 62(11):947-953. DOI: 10.1007/s00117-022-01060-0.
|
[9] |
CHEN Q, PAN T, WANG Y N, et al. A coronary CT angiography radiomics model to identify vulnerable plaque and predict cardiovascular events[J]. Radiology, 2023, 307(2):e221693. DOI: 10.1148/radiol.221693.
|
[10] |
NARAYAN S M, WANG P J, DAUBERT J P. New concepts in sudden cardiac arrest to address an intractable epidemic:JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(1):70-88. DOI: 10.1016/j.jacc.2018.09.083.
|
[11] |
BOLLEPALLI S C, SEVAKULA R K, AU-YEUNG W M, et al. Real-time arrhythmia detection using hybrid convolutional neural networks[J]. J Am Heart Assoc, 2021, 10(23):e023222. DOI: 10.1161/JAHA.121.023222.
|
[12] |
ATTIA Z I, NOSEWORTHY P A, LOPEZ-JIMENEZ F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm:a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201):861-867. DOI: 10.1016/S0140-6736(19)31721-0.
|
[13] |
AL-ZAITI S, BESOMI L, BOUZID Z, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram[J]. Nat Commun, 2020, 11(1):3966. DOI: 10.1038/s41467-020-17804-2.
|
[14] |
SMITH S W, WALSH B, GRAUER K, et al. A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation[J]. J Electrocardiol, 2019, 52:88-95. DOI: 10.1016/j.jelectrocard.2018.11.013.
|
[15] |
YAO X X, RUSHLOW D R, INSELMAN J W, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction:a pragmatic,randomized clinical trial[J]. Nat Med, 2021, 27(5):815-819. DOI: 10.1038/s41591-021-01335-4.
|
[16] |
SIONTIS K C, LIU K, BOS J M, et al. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents[J]. Int J Cardiol, 2021, 340:42-47. DOI: 10.1016/j.ijcard.2021.08.026.
|
[17] |
LIU W T, LIN C S, TSAO T P, et al. A deep-learning algorithm-enhanced system integrating electrocardiograms and chest X-rays for diagnosing aortic dissection[J]. Can J Cardiol, 2022, 38(2):160-168. DOI: 10.1016/j.cjca.2021.09.028.
|
[18] |
TANG S Y, RAZEGHI O, KAPOOR R, et al. Machine learning-enabled multimodal fusion of intra-atrial and body surface signals in prediction of atrial fibrillation ablation outcomes[J]. Circ Arrhythm Electrophysiol, 2022, 15(8):e010850. DOI: 10.1161/CIRCEP.122.010850.
|
[19] |
RUSH B, CELI L A, STONE D J. Applying machine learning to continuously monitored physiological data[J]. J Clin Monit Comput, 2019, 33(5):887-893. DOI: 10.1007/s10877-018-0219-z.
|
[20] |
GUGLIN M E, THATAI D. Common errors in computer electrocardiogram interpretation[J]. Int J Cardiol, 2006, 106(2):232-237. DOI: 10.1016/j.ijcard.2005.02.007.
|
[21] |
SYED M, SYED S, SEXTON K, et al. Application of machine learning in intensive care unit(ICU)settings using MIMIC dataset:systematic review[J]. Informatics, 2021, 8(1):16. DOI: 10.3390/informatics8010016.
|
[22] |
MATAM B R, DUNCAN H, LOWE D. Machine learning based framework to predict cardiac arrests in a paediatric intensive care unit:prediction of cardiac arrests[J]. J Clin Monit Comput, 2019, 33(4):713-724. DOI: 10.1007/s10877-018-0198-0.
|
[23] |
FALSETTI L, RUCCO M, PROIETTI M, et al. Risk prediction of clinical adverse outcomes with machine learning in a cohort of critically ill patients with atrial fibrillation[J]. Sci Rep, 2021, 11(1):18925. DOI: 10.1038/s41598-021-97218-2.
|
[24] |
GUO Y T, WANG H, ZHANG H, et al. Mobile photoplethysmographic technology to detect atrial fibrillation[J]. J Am Coll Cardiol, 2019, 74(19):2365-2375. DOI: 10.1016/j.jacc.2019.08.019.
|
[25] |
SHAH A J, ISAKADZE N, LEVANTSEVYCH O, et al. Detecting heart failure using wearables:a pilot study[J]. Physiol Meas, 2020, 41(4):44001. DOI: 10.1088/1361-6579/ab7f93.
|
[26] |
HAIBE-KAINS B, ADAM G A, HOSNY A, et al. Transparency and reproducibility in artificial intelligence[J]. Nature, 2020, 586(7829):E14-16. DOI: 10.1038/s41586-020-2766-y.
|
[27] |
WYATT K D, POOLE L R, MULLAN A F, et al. Clinical evaluation and diagnostic yield following evaluation of abnormal pulse detected using Apple Watch[J]. J Am Med Inform Assoc, 2020, 27(9):1359-1363. DOI: 10.1093/jamia/ocaa137.
|
[28] |
TRAN V T, RIVEROS C, RAVAUD P. Patients' views of wearable devices and AI in healthcare:findings from the ComPaRe e-cohort[J]. NPJ Digit Med, 2019, 2:53. DOI: 10.1038/s41746-019-0132-y.
|
[29] |
PIRRACCHIO R, PETERSEN M L, CARONE M, et al. Mortality prediction in intensive care units with the Super ICU Learner Algorithm(SICULA):a population-based study[J]. Lancet Respir Med, 2015, 3(1):42-52. DOI: 10.1016/S2213-2600(14)70239-5.
|
[30] |
WU T T, ZHENG R F, LIN Z Z, et al. A machine learning model to predict critical care outcomes in patient with chest pain visiting the emergency department[J]. BMC Emerg Med, 2021, 21(1):112. DOI: 10.1186/s12873-021-00501-8.
|
[31] |
ZHAO J, FENG Q P, WU P, et al. Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction[J]. Sci Rep, 2019, 9(1):717. DOI: 10.1038/s41598-018-36745-x.
|