[1] |
SETH D, CHELDIZE K, BROWN D, et al. Global burden of skin disease:inequities and innovations[J]. Curr Dermatol Rep, 2017, 6(3):204-210. DOI: 10.1007/s13671-017-0192-7.
|
[2] |
KAO S Z, EKWUEME D U, HOLMAN D M, et al. Economic burden of skin cancer treatment in the USA:an analysis of the Medical Expenditure Panel Survey Data,2012-2018[J]. Cancer Causes Control, 2023, 34(3):205-212. DOI: 10.1007/s10552-022-01644-0.
|
[3] |
DOELEMAN T, HONDELINK L M, VERMEER M H, et al. Artificial intelligence in digital pathology of cutaneous lymphomas:a review of the current state and future perspectives[J]. Semin Cancer Biol, 2023, 94:81-88. DOI: 10.1016/j.semcancer.2023.06.004.
|
[4] |
LIOPYRIS K, GREGORIOU S, DIAS J, et al. Artificial intelligence in dermatology:challenges and perspectives[J]. Dermatol Ther, 2022, 12(12):2637-2651. DOI: 10.1007/s13555-022-00833-8.
|
[5] |
STRZELECKI M, KOCIOŁEK M, STRĄKOWSKA M, et al. Artificial intelligence in the detection of skin cancer:state of the art[J]. Clin Dermatol, 2024, 42(3):280-295. DOI: 10.1016/j.clindermatol.2023.12.022.
|
[6] |
WU H J, YIN H, CHEN H P, et al. A deep learning,image based approach for automated diagnosis for inflammatory skin diseases[J]. Ann Transl Med, 2020, 8(9):581. DOI: 10.21037/atm.2020.04.39.
|
[7] |
LI Q W, YANG Z, CHEN K L, et al. Human-multimodal deep learning collaboration in 'precise' diagnosis of lupus erythematosus subtypes and similar skin diseases[J]. J Eur Acad Dermatol Venereol, 2024. DOI: 10.1111/jdv.20031.
|
[8] |
YIN H, CHEN H, ZHANG W, et al. Image-based remote evaluation of PASI scores with psoriasis by the YOLO-v4 algorithm[J]. Exp Dermatol, 2024, 33(4):e15082. DOI: 10.1111/exd.15082.
|
[9] |
VYAS J, JOHNS J R, ALI F M, et al. A systematic review of 454 randomized controlled trials using the Dermatology Life Quality Index:experience in 69 diseases and 43 countries[J]. Br J Dermatol, 2024, 190(3):315-339. DOI: 10.1093/bjd/ljad079.
|
[10] |
BRINKER T J, HEKLER A, ENK A H, et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task[J]. Eur J Cancer, 2019, 113:47-54. DOI: 10.1016/j.ejca.2019.04.001.
|
[11] |
TOBAR M D P B, CLEMANN S, HAGENS R, et al. Skinly:a novel handheld IoT device for validating biophysical skin characteristics[J]. Skin Res Technol, 2024, 30(3):e13613. DOI: 10.1111/srt.13613.
|
[12] |
KRAMMER S, LI Y, JAKOB N, et al. Deep learning-based classification of dermatological lesions given a limited amount of labelled data[J]. J Eur Acad Dermatol Venereol, 2022, 36(12):2516-2524. DOI: 10.1111/jdv.18460.
|
[13] |
PATEL S, WANG J V, MOTAPARTHI K, et al. Artificial intelligence in dermatology for the clinician[J]. Clin Dermatol, 2021, 39(4):667-672. DOI: 10.1016/j.clindermatol.2021.03.012.
|
[14] |
GROH M, BADRI O, DANESHJOU R, et al. Deep learning-aided decision support for diagnosis of skin disease across skin tones[J]. Nat Med, 2024, 30(2):573-583. DOI: 10.1038/s41591-023-02728-3.
|
[15] |
CROVELLA S, SULEMAN M, TRICARICO P M, et al. Harnessing artificial intelligence for advancing early diagnosis in hidradenitis suppurativa[J]. Ital J Dermatol Venerol, 2024, 159(1):43-49. DOI: 10.23736/S2784-8671.23.07829-5.
|
[16] |
GORDON E R, TRAGER M H, KONTOS D, et al. Ethical considerations for artificial intelligence in dermatology:a scoping review[J]. Br J Dermatol, 2024, 190(6):789-797. DOI: 10.1093/bjd/ljae040.
|
[17] |
AL-ALI F, POLESIE S, PAOLI J, et al. Attitudes towards artificial intelligence among dermatologists working in Saudi Arabia[J]. Dermatol Pract Concept, 2023, 13(1):e2023035. DOI: 10.5826/dpc.1301a35.
|
[18] |
AL-MEDFA M K, AL-ANSARI A M S, DARWISH A H, et al. Physicians' attitudes and knowledge toward artificial intelligence in medicine:benefits and drawbacks[J]. Heliyon, 2023, 9(4):e14744. DOI: 10.1016/j.heliyon.2023.e14744.
|
[19] |
ALLEN M R, WEBB S, MANDVI A, et al. Navigating the doctor-patient-AI relationship - a mixed-methods study of physician attitudes toward artificial intelligence in primary care[J]. BMC Prim Care, 2024, 25(1):42. DOI: 10.1186/s12875-024-02282-y.
|
[20] |
BUCK C, DOCTOR E, HENNRICH J, et al. General practitioners' attitudes toward artificial intelligence-enabled systems:interview study[J]. J Med Internet Res, 2022, 24(1):e28916. DOI: 10.2196/28916.
|
[21] |
VO V, CHEN G, AQUINO Y S J, et al. Multi-stakeholder preferences for the use of artificial intelligence in healthcare:a systematic review and thematic analysis[J]. Soc Sci Med, 2023, 338:116357. DOI: 10.1016/j.socscimed.2023.116357.
|
[22] |
ROBERTSON C, WOODS A, BERGSTRAND K, et al. Diverse patients' attitudes towards Artificial Intelligence(AI) in diagnosis[J]. PLoS Digit Health, 2023, 2(5):e0000237. DOI: 10.1371/journal.pdig.0000237.
|