中国全科医学 ›› 2024, Vol. 27 ›› Issue (27): 3344-3350.DOI: 10.12114/j.issn.1007-9572.2024.0018

• 论著 • 上一篇    下一篇

35岁以上人群连续代谢综合征评分及其他肥胖指标与心脏代谢性共病关系:基于安徽省的横断面研究

韩正1,2, 王为强1,*(), 潘姚佳1,2, 傅方琳1,2, 孙梦1,2   

  1. 1.234000 安徽省宿州市,安徽医科大学附属宿州医院 安徽省宿州市立医院全科医学科
    2.230000 安徽省合肥市,安徽医科大学
  • 收稿日期:2024-01-25 修回日期:2024-04-17 出版日期:2024-09-20 发布日期:2024-06-14
  • 通讯作者: 王为强

  • 作者贡献:

    韩正提出主要研究目标,负责研究的构思与设计,研究的实施,撰写论文;韩正、傅方琳进行数据的收集与整理,统计学处理,图、表的绘制与展示;潘姚佳、孙梦进行论文的修订;王为强负责文章的质量控制与审查,对文章整体负责,监督管理。

  • 基金资助:
    安徽省科技创新战略与软科学研究专项计划项目(202106f01050042)

A Cross-sectional Study of the Association of cMetS and Other Obesity Indicators with Cardiometabolic Co-morbidities in People over 35 Years of Age in Anhui Province

HAN Zheng1,2, WANG Weiqiang1,*(), PAN Yaojia1,2, FU Fanglin1,2, SUN Meng1,2   

  1. 1.Department of General Medicine, Suzhou Hospital Affiliated to Anhui Medical University/Suzhou Municipal Hospital of Anhui Province, Suzhou 234000, China
    2.Anhui Medical University, Hefei 230000, China
  • Received:2024-01-25 Revised:2024-04-17 Published:2024-09-20 Online:2024-06-14
  • Contact: WANG Weiqiang

摘要: 背景 随着中国人口逐步老龄化及慢性病共病人群的增多,心脏代谢性共病(CMM)已成为危害程度较高的共病。目前对于CMM的预测和干预方法的研究多集中于单个心血管疾病和生活方式,而缺乏针对CMM整体的研究。 目的 探讨代连续代谢综合征评分(cMetS)及其他肥胖指标与CMM的相关性,并进一步确认是否可作为筛查CMM的简易指标,以及估计安徽省中老年人群中预测CMM的临界点。 方法 纳入2017—2021年安徽省心血管疾病高危人群早期筛查与综合干预项目人群131 390例为研究对象,分为CMM组(男779例,女866例)和非CMM组(男53 020例,女76 725例)。收集患者一般资料和生化指标,计算腰高比(WHtR)、腰高比0.5(WHT.5R)、身体圆度指数(BRI)、cMetS。采用Bonferroni法比较不同性别不同年龄段人群CMM患病率的差异。采用多因素Logistic逐步回归分析探究CMM的影响因素。绘制cMetS和肥胖指标预测CMM的受试者工作特征曲线(ROC曲线)并计算ROC曲线下面积(AUC),使用成对样本检验评估不同指标在预测CMM状态中的价值差异性。 结果 男性群体中CMM组年龄、BMI、腰围(WC)、平均动脉压(MAP)、空腹血糖(FPG)、三酰甘油(TG)、糖尿病、缺血性心脏病、卒中、WHtR、WHT.5R、BRI、cMetS高于非CMM组,吸烟比例、饮酒比例、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)低于非CMM组(P<0.05)。女性群体中CMM组年龄、BMI、WC、MAP、FPG、糖尿病、缺血性心脏病、卒中、WHtR、WHT.5R、BRI、cMetS高于非CMM组,TC、HDL-C低于非CMM组(P<0.05)。男性、女性患者不同年龄段CMM患病率不同(P<0.05)。多因素Logistic回归分析结果显示cMetS、WHtR、WHT.5R、BRI、BMI升高是男性人群及女性人群CMM患病的危险因素(P<0.05)。绘制cMetS、WHtR、WHT.5R、BRI、BMI诊断CMM患病的ROC曲线,结果显示:男性群体中cMetS的AUC高于WHtR(Z=6.16,P<0.001)、BRI(Z=6.16,P<0.001)、WHT.5R(Z=7.21,P<0.001)、BMI(Z=9.36,P<0.001);女性群体中cMetS的AUC高于WHtR(Z=5.71,P<0.001)、BRI(Z=5.71,P<0.001)、WHT.5R(Z=6.92,P<0.001)、BMI(Z=9.98,P<0.001)。 结论 在不同性别中,cMetS和其他肥胖指标均与CMM密切相关,且在识别CMM方面cMetS优于其余指标。cMetS可作为诊断CMM的一项新型指标,在预防CMM方面具有重要意义。

关键词: 代谢综合征, 心脏代谢性共病, 连续代谢综合征评分, 安徽省, 横断面研究

Abstract:

Background

With the gradual aging of China's population and the gradual rise of chronic disease co-morbidities, cardiometabolic co-morbidities (CMM) have become one of the most damaging co-morbidities. Current studies on prediction and intervention methods for CMM have focused on individual cardiovascular diseases and lifestyle, while studies on CMM as a whole are lacking.

Objective

To explore the association of Continuous Metabolic Syndrome Score (cMetS) and other obesity indicators with CMM, and to further confirm whether these indicators can be used as a simple indicator for screening CMM, as well as to estimate the threshold for prediction of CMM in the middle-aged and elderly population in Anhui Province.

Methods

The study included 131 390 participants from the Anhui Province Cardiovascular Disease High-Risk Population Early Screening and Comprehensive Intervention Project from 2017 to 2021, divided into CMM (779 males, 866 females) and non-CMM groups (53 020 males, 76 725 females). General patient information and biochemical markers were collected, and the waist-to-height ratio (WHtR), WHT.5R, body roundness index (BRI), and cMetS were calculated. Differences in CMM prevalence by gender and age group were compared using the Bonferroni method. Multivariate Logistic regression analysis was employed to investigate the factors influencing CMM. Receiver operating characteristic (ROC) curves for predicting CMM using cMetS and obesity indices were plotted, and the area under the ROC curve (AUC) was calculated. The value of different indices in predicting CMM status was assessed using paired sample tests.

Results

In the male cohort, the CMM group showed higher values for age, BMI, waist circumference (WC), mean arterial pressure (MAP), fasting plasma glucose (FPG), triglycerides (TG), diabetes, ischemic heart disease, stroke, WHtR, WHT.5R, BRI, and cMetS than the non-CMM group. Smoking and alcohol consumption, as well as total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), were higher in the non-CMM group (P<0.05). In females, similar trends were observed, with lower levels of TC and HDL-C in the CMM group (P<0.05). The prevalence of CMM varied across different age groups in both male and female patients (P<0.05). Multivariate Logistic regression analysis indicated that increases in cMetS, WHtR, WHT.5R, BRI, and BMI are risk factors for CMM in both genders (P<0.05). ROC curve analysis showed that in males, the AUC for cMetS was higher than that for WHtR (Z=6.16, P<0.001), BRI (Z=6.16, P<0.001), WHT.5R (Z=7.21, P<0.001), and BMI (Z=9.36, P<0.001). Similar findings were observed for females, with cMetS outperforming the other indices.

Conclusion

In both genders, cMetS and other obesity indices are closely associated with CMM, with cMetS being a superior identifier. cMetS serves as a novel marker for diagnosing CMM, highlighting its significance in the prevention of this condition.

Key words: Metabolic syndrome, Cardiometabolic multimorbidity, Continuous metabolic syndrome score, Anhui province, Cross-sectional studies