[1] |
LINSALATA M, RIEZZO G, ORLANDO A,et al. The relationship between low serum vitamin D levels and altered intestinal barrier function in patients with IBS diarrhoea undergoing a long-term low-FODMAP diet:novel observations from a clinical trial[J]. Nutrients, 2021, 13(3):1011. DOI: 10.3390/nu13031011.
|
[2] |
MEHANDRU S, COLOMBEL J F. The intestinal barrier,an arbitrator turned provocateur in IBD[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(2):83-84. DOI: 10.1038/s41575-020-00399-w.
|
[3] |
JANNEY A, POWRIE F, MANN E H. Host-microbiota maladaptation in colorectal cancer[J]. Nature, 2020, 585(7826):509-517. DOI: 10.1038/s41586-020-2729-3.
|
[4] |
CAMARA-LEMARROY C R, METZ L, MEDDINGS J B,et al. The intestinal barrier in multiple sclerosis:implications for pathophysiology and therapeutics[J]. Brain, 2018, 141(7):1900-1916. DOI: 10.1093/brain/awy131.
|
[5] |
LEWIS C V, TAYLOR W R. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease[J]. Am J Physiol Heart Circ Physiol, 2020, 319(6):H1227-1233. DOI: 10.1152/ajpheart.00612.2020.
|
[6] |
AN J, LIU Y Q, WANG Y Q,et al. The role of intestinal mucosal barrier in autoimmune disease:a potential target[J]. Front Immunol, 2022, 13:871713. DOI: 10.3389/fimmu.2022.871713.
|
[7] |
GEHART H, CLEVERS H. Tales from the crypt:new insights into intestinal stem cells[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(1):19-34. DOI: 10.1038/s41575-018-0081-y.
|
[8] |
ISHIKAWA K, SUGIMOTO S, ODA M,et al. Identification of quiescent LGR5+ stem cells in the human colon[J]. Gastroenterology, 2022, 163(5):1391-1406.e24. DOI: 10.1053/j.gastro.2022.07.081.
|
[9] |
LEUNG C, TAN S H, BARKER N. Recent advances in Lgr5+ stem cell research[J]. Trends Cell Biol, 2018, 28(5):380-391. DOI: 10.1016/j.tcb.2018.01.010.
|
[10] |
CHEN L, VASOYA R P, TOKE N H,et al. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice[J]. Gastroenterology, 2020, 158(4):985-999.e9. DOI: 10.1053/j.gastro.2019.11.031.
|
[11] |
GUNN D, GARSED K, LAM C,et al. Abnormalities of mucosal serotonin metabolism and 5-HT3 receptor subunit 3C polymorphism in irritable bowel syndrome with diarrhoea predict responsiveness to ondansetron[J]. Aliment Pharmacol Ther, 2019, 50(5):538-546. DOI: 10.1111/apt.15420.
|
[12] |
|
[13] |
李春静,马玉侠. 基于代谢组学的隔药灸脐法治疗脾虚型肠易激综合征机制研究[J]. 中华中医药杂志,2019,34(7):2969-2972.
|
[14] |
DONG L N, WANG M, GUO J,et al. Role of intestinal microbiota and metabolites in inflammatory bowel disease[J]. Chin Med J, 2019, 132(13):1610-1614. DOI: 10.1097/CM9.0000000000000290.
|
[15] |
BEYAZ S, MANA M D, ROPER J,et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors[J]. Nature, 2016, 531(7592):53-58. DOI: 10.1038/nature17173.
|
[16] |
HOY A J, NAGARAJAN S R, BUTLER L M. Tumour fatty acid metabolism in the context of therapy resistance and obesity[J]. Nat Rev Cancer, 2021, 21(12):753-766. DOI: 10.1038/s41568-021-00388-4.
|
[17] |
FU T, COULTER S, YOSHIHARA E,et al. FXR regulates intestinal cancer stem cell proliferation[J]. Cell, 2019, 176(5):1098-1112.e18. DOI: 10.1016/j.cell.2019.01.036.
|
[18] |
PERINO A, DEMAGNY H, VELAZQUEZ-VILLEGAS L,et al. Molecular physiology of bile acid signaling in health,disease,and aging[J]. Physiol Rev, 2021, 101(2):683-731. DOI: 10.1152/physrev.00049.2019.
|
[19] |
SORRENTINO G, PERINO A, YILDIZ E,et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration[J]. Gastroenterology, 2020, 159(3):956-968.e8. DOI: 10.1053/j.gastro.2020.05.067.
|
[20] |
CHEN L, JIAO T Y, LIU W W,et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal[J]. Cell Stem Cell, 2022, 29(9):1366-1381.e9. DOI: 10.1016/j.stem.2022.08.008.
|
[21] |
LI X L, YANG Y Y, ZHANG B,et al. Lactate metabolism in human health and disease[J]. Signal Transduct Target Ther, 2022, 7(1):305. DOI: 10.1038/s41392-022-01151-3.
|
[22] |
RABINOWITZ J D, ENERBÄCK S. Lactate:the ugly duckling of energy metabolism[J]. Nat Metab, 2020, 2(7):566-571. DOI: 10.1038/s42255-020-0243-4.
|
[23] |
LEE Y S, KIM T Y, KIM Y,et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development[J]. Cell Host Microbe, 2018, 24(6):833-846.e6. DOI: 10.1016/j.chom.2018.11.002.
|
[24] |
LIU X, HODGSON J J, BUCHON N. Drosophila as a model for homeostatic,antibacterial,and antiviral mechanisms in the gut[J]. PLoS Pathog, 2017, 13(5):e1006277. DOI: 10.1371/journal.ppat.1006277.
|
[25] |
IATSENKO I, BOQUETE J P, LEMAITRE B. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase nox and shortens Drosophila lifespan[J]. Immunity, 2018, 49(5):929-942.e5. DOI: 10.1016/j.immuni.2018.09.017.
|
[26] |
ZHANG H B, MENZIES K J, AUWERX J. The role of mitochondria in stem cell fate and aging[J]. Development, 2018, 145(8):dev143420. DOI: 10.1242/dev.143420.
|
[27] |
LUDIKHUIZE M C, MEERLO M, GALLEGO M P,et al. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/notch axis[J]. Cell Metab, 2020, 32(5):889-900.e7. DOI: 10.1016/j.cmet.2020.10.005.
|
[28] |
SONG I S, JEONG Y J, JEONG S H,et al. FOXM1-induced PRX3 regulates stemness and survival of colon cancer cells via maintenance of mitochondrial function[J]. Gastroenterology, 2015, 149(4):1006-1016.e9. DOI: 10.1053/j.gastro.2015.06.007.
|
[29] |
RATH E, MOSCHETTA A, HALLER D. Mitochondrial function - gatekeeper of intestinal epithelial cell homeostasis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(8):497-516. DOI: 10.1038/s41575-018-0021-x.
|
[30] |
BENSARD C L, WISIDAGAMA D R, OLSON K A,et al. Regulation of tumor initiation by the mitochondrial pyruvate carrier[J]. Cell Metab, 2020, 31(2):284-300.e7. DOI: 10.1016/j.cmet.2019.11.002.
|
[31] |
SCHELL J C, WISIDAGAMA D R, BENSARD C,et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism[J]. Nat Cell Biol, 2017, 19(9):1027-1036. DOI: 10.1038/ncb3593.
|
[32] |
|
[33] |
|
[34] |
LIU N, SUN S Q, WANG P J,et al. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine[J]. Int J Mol Sci, 2021, 22(15):7931. DOI: 10.3390/ijms22157931.
|
[35] |
MARKANDEY M, BAJAJ A, ILOTT N E,et al. Gut microbiota:sculptors of the intestinal stem cell niche in health and inflammatory bowel disease[J]. Gut Microbes, 2021, 13(1):1990827. DOI: 10.1080/19490976.2021.1990827.
|
[36] |
XING P Y, PETTERSSON S, KUNDU P. Microbial metabolites and intestinal stem cells tune intestinal homeostasis[J]. Proteomics, 2020, 20(5/6):e1800419. DOI: 10.1002/pmic.201800419.
|
[37] |
ZHU P P, LU T K, WU J Y,et al. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons[J]. Cell Res, 2022, 32(6):555-569. DOI: 10.1038/s41422-022-00645-7.
|
[38] |
|
[39] |
VILLABLANCA E J, SELIN K, HEDIN C R H. Mechanisms of mucosal healing:treating inflammatory bowel disease without immunosuppression?[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(8):493-507. DOI: 10.1038/s41575-022-00604-y.
|
[40] |
PU Z N, YANG F, WANG L,et al. Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer[J]. J Drug Target, 2021, 29(5):507-519. DOI: 10.1080/1061186X.2020.1864741.
|
[41] |
ZHAO Y X, LUAN H F, GAO H,et al. Gegen Qinlian Decoction maintains colonic mucosal homeostasis in acute/chronic ulcerative colitis via bidirectionally modulating dysregulated Notch signaling[J]. Phytomedicine, 2020, 68:153182. DOI: 10.1016/j.phymed.2020.153182.
|
[42] |
LIN J C, WU J Q, WANG F,et al. QingBai Decoction regulates intestinal permeability of dextran sulphate sodium-induced colitis through the modulation of Notch and NF-κB signalling[J]. Cell Prolif, 2019, 52(2):e12547. DOI: 10.1111/cpr.12547.
|