[1] |
BARAZZONI R, GORTAN CAPPELLARI G, RAGNI M,et al. Insulin resistance in obesity:an overview of fundamental alterations[J]. Eat Weight Disord, 2018, 23(2):149-157. DOI: 10.1007/s40519-018-0481-6.
|
[2] |
|
[3] |
LEE S H, PARK S Y, CHOI C S. Insulin resistance:from mechanisms to therapeutic strategies[J]. Diabetes Metab J, 2022, 46(1):15-37. DOI: 10.4093/dmj.2021.0280.
|
[4] |
HOUTMAN T A, ECKERMANN H A, SMIDT H,et al. Gut microbiota and BMI throughout childhood:the role of firmicutes,bacteroidetes,and short-chain fatty acid producers[J]. Sci Rep, 2022, 12(1):3140. DOI: 10.1038/s41598-022-07176-6.
|
[5] |
|
[6] |
AMABEBE E, ROBERT F O, AGBALALAH T,et al. Microbial dysbiosis-induced obesity:role of gut microbiota in homoeostasis of energy metabolism[J]. Br J Nutr, 2020, 123(10):1127-1137. DOI: 10.1017/S0007114520000380.
|
[7] |
NADEEM S F, GOHAR U F, TAHIR S F,et al. Antimicrobial resistance:more than 70 years of war between humans and bacteria[J]. Crit Rev Microbiol, 2020, 46(5):578-599. DOI: 10.1080/1040841X.2020.1813687.
|
[8] |
AL BANDER Z, NITERT M D, MOUSA A Y,et al. The gut microbiota and inflammation:an overview[J]. Int J Environ Res Public Health, 2020, 17(20):7618. DOI: 10.3390/ijerph17207618.
|
[9] |
KARLSSON C L,ONNERFÄLT J,XU J,et al. The microbiota of the gut in preschool children with normal and excessive body weight[J]. Obesity,2012,20(11):2257-2261.
|
[10] |
TURNBAUGH P J, LEY R E, MAHOWALD M A,et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031. DOI: 10.1038/nature05414.
|
[11] |
JUMPERTZ R, LE D S, TURNBAUGH P J,et al. Energy-balance studies reveal associations between gut microbes,caloric load,and nutrient absorption in humans[J]. Am J Clin Nutr, 2011, 94(1):58-65. DOI: 10.3945/ajcn.110.010132.
|
[12] |
ZHAO L, ZHANG X, SHEN Y,et al. Obesity and iron deficiency:a quantitative meta-analysis[J]. Obes Rev, 2015, 16(12):1081-1093. DOI: 10.1111/obr.12323.
|
[13] |
GUPTA V K, KIM M, BAKSHI U,et al. A predictive index for health status using species-level gut microbiome profiling[J]. Nat Commun, 2020, 11(1):4635. DOI: 10.1038/s41467-020-18476-8.
|
[14] |
DAS L, VIRMANI R, SHARMA V,et al. Human milk microbiota:transferring the antibiotic resistome to infants[J]. Indian J Microbiol, 2019, 59(4):410-416. DOI: 10.1007/s12088-019-00824-y.
|
[15] |
YAO Y, CAI X Y, YE Y Q,et al. The role of microbiota in infant health:from early life to adulthood[J]. Front Immunol, 2021, 12:708472. DOI: 10.3389/fimmu.2021.708472.
|
[16] |
DE GOFFAU M C, LAGER S, SOVIO U,et al. Human placenta has no microbiome but can contain potential pathogens[J]. Nature, 2019, 572(7769):329-334. DOI: 10.1038/s41586-019-1451-5.
|
[17] |
STERPU I, FRANSSON E, HUGERTH L W,et al. No evidence for a placental microbiome in human pregnancies at term[J]. Am J Obstet Gynecol, 2021, 224(3):296.e1-296.e23. DOI: 10.1016/j.ajog.2020.08.103.
|
[18] |
KIMURA I, MIYAMOTO J, OHUE-KITANO R,et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice[J]. Science, 2020, 367(6481):eaaw8429. DOI: 10.1126/science.aaw8429.
|
[19] |
|
[20] |
CASTANYS-MUÑOZ E, MARTIN M J, VAZQUEZ E. Building a beneficial microbiome from birth[J]. Adv Nutr, 2016, 7(2):323-330. DOI: 10.3945/an.115.010694.
|
[21] |
LEE E, KIM B J, KANG M J,et al. Dynamics of gut microbiota according to the delivery mode in healthy Korean infants[J]. Allergy Asthma Immunol Res, 2016, 8(5):471-477. DOI: 10.4168/aair.2016.8.5.471.
|
[22] |
|
[23] |
YUAN C Z, GASKINS A J, BLAINE A I,et al. Association between cesarean birth and risk of obesity in offspring in childhood,adolescence,and early adulthood[J]. JAMA Pediatr, 2016, 170(11):e162385. DOI: 10.1001/jamapediatrics.2016.2385.
|
[24] |
RIVA A, BORGO F, LASSANDRO C,et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations[J]. Environ Microbiol, 2017, 19(1):95-105. DOI: 10.1111/1462-2920.13463.
|
[25] |
CHAVARRO J E, MARTÍN-CALVO N, YUAN C Z,et al. Association of birth by cesarean delivery with obesity and type 2 diabetes among adult women[J]. JAMA Netw Open, 2020, 3(4):e202605. DOI: 10.1001/jamanetworkopen.2020.2605.
|
[26] |
BETRAN A P, YE J F, MOLLER A B,et al. Trends and projections of caesarean section rates:global and regional estimates[J]. BMJ Glob Health, 2021, 6(6):e005671. DOI: 10.1136/bmjgh-2021-005671.
|
[27] |
LYONS K E, RYAN C A, DEMPSEY E M,et al. Breast milk,a source of beneficial microbes and associated benefits for infant health[J]. Nutrients, 2020, 12(4):1039. DOI: 10.3390/nu12041039.
|
[28] |
PEIROTÉN A, ARQUÉS J L, MEDINA M,et al. Bifidobacterial strains shared by mother and child as source of probiotics[J]. Benef Microbes, 2018, 9(2):231-238. DOI: 10.3920/BM2017.0133.
|
[29] |
LAURSEN M F, ANDERSEN L B, MICHAELSEN K F,et al. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity[J]. mSphere, 2016, 1(1):e00069-00015. DOI: 10.1128/mSphere.00069-15.
|
[30] |
BÄCKHED F, ROSWALL J, PENG Y Q,et al. Dynamics and stabilization of the human gut microbiome during the first year of life[J]. Cell Host Microbe, 2015, 17(6):852. DOI: 10.1016/j.chom.2015.05.012.
|
[31] |
UZAN-YULZARI A, TURTA O, BELOGOLOVSKI A,et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization[J]. Nat Commun, 2021, 12(1):443. DOI: 10.1038/s41467-020-20495-4.
|
[32] |
GU S L, GONG Y W, ZHANG J Y,et al. Effect of the short-term use of fluoroquinolone and β-lactam antibiotics on mouse gut microbiota[J]. Infect Drug Resist, 2020, 13:4547-4558. DOI: 10.2147/IDR.S281274.
|
[33] |
POULSEN M N, POLLAK J, BAILEY-DAVIS L,et al. Associations of prenatal and childhood antibiotic use with child body mass index at age 3 years[J]. Obesity, 2017, 25(2):438-444. DOI: 10.1002/oby.21719.
|
[34] |
MINOT S, SINHA R, CHEN J,et al. The human gut virome:inter-individual variation and dynamic response to diet[J]. Genome Res, 2011, 21(10):1616-1625. DOI: 10.1101/gr.122705.111.
|
[35] |
NAKAYAMA J, YAMAMOTO A, PALERMO-CONDE L A,et al. Impact of westernized diet on gut microbiota in children on Leyte Island[J]. Front Microbiol, 2017, 8:197. DOI: 10.3389/fmicb.2017.00197.
|
[36] |
WU X Y, XIA Y Y, HE F,et al. Intestinal mycobiota in health and diseases:from a disrupted equilibrium to clinical opportunities[J]. Microbiome, 2021, 9(1):60. DOI: 10.1186/s40168-021-01024-x.
|
[37] |
CREMONINI E, WANG Z W, BETTAIEB A,et al.(-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization:implications for steatosis and insulin resistance[J]. Redox Biol, 2018, 14:588-599. DOI: 10.1016/j.redox.2017.11.002.
|
[38] |
CHROBOK L, KLICH J D, SANETRA A M,et al. Rhythmic neuronal activities of the rat nucleus of the solitary tract are impaired by high-fat diet - implications for daily control of satiety[J]. J Physiol, 2022, 600(4):751-767. DOI: 10.1113/JP281838.
|
[39] |
TIROSH A, CALAY E S, TUNCMAN G,et al. The short-chain fatty acid propionate increases glucagon and FABP4 production,impairing insulin action in mice and humans[J]. Sci Transl Med, 2019, 11(489):eaav0120. DOI: 10.1126/scitranslmed.aav0120.
|
[40] |
PANNARAJ P S, LI F, CERINI C,et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome[J]. JAMA Pediatr, 2017, 171(7):647-654. DOI: 10.1001/jamapediatrics.2017.0378.
|
[41] |
HE Y, WU W, ZHENG H M,et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models[J]. Nat Med, 2018, 24(10):1532-1535. DOI: 10.1038/s41591-018-0164-x.
|
[42] |
FALLANI M, YOUNG D, SCOTT J,et al. Intestinal microbiota of 6-week-old infants across Europe:geographic influence beyond delivery mode,breast-feeding,and antibiotics[J]. J Pediatr Gastroenterol Nutr, 2010, 51(1):77-84. DOI: 10.1097/MPG.0b013e3181d1b11e.
|
[43] |
DE FILIPPO C, DI PAOLA M, RAMAZZOTTI M,et al. Diet,environments,and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy[J]. Front Microbiol, 2017, 8:1979. DOI: 10.3389/fmicb.2017.01979.
|
[44] |
COLELLA M, CHARITOS I A, BALLINI A,et al. Microbiota revolution:how gut microbes regulate our lives[J]. World J Gastroenterol, 2023, 29(28):4368-4383. DOI: 10.3748/wjg.v29.i28.4368.
|
[45] |
LIU R X,HONG J,XU X Q,et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention[J]. Nat Med,2017,23(7):859-868.
|
[46] |
WANDERS A J, VAN DEN BORNE J J, GRAAF C D,et al. Effects of dietary fibre on subjective appetite,energy intake and body weight:a systematic review of randomized controlled trials[J]. Obes Rev, 2011, 12(9):724-739. DOI: 10.1111/j.1467-789X.2011.00895.x.
|
[47] |
ZIĘTAK M, KOVATCHEVA-DATCHARY P, MARKIEWICZ L H,et al. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure[J]. Cell Metab, 2016, 23(6):1216-1223. DOI: 10.1016/j.cmet.2016.05.001.
|
[48] |
SCHLUTER J, PELED J U, TAYLOR B P,et al. The gut microbiota is associated with immune cell dynamics in humans[J]. Nature, 2020, 588(7837):303-307. DOI: 10.1038/s41586-020-2971-8.
|
[49] |
DALILE B, VAN OUDENHOVE L, VERVLIET B,et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8):461-478. DOI: 10.1038/s41575-019-0157-3.
|
[50] |
SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol, 2020, 11:25. DOI: 10.3389/fendo.2020.00025.
|
[51] |
GUO W Q, ZHANG Z L, LI L R,et al. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes[J]. Pharmacol Res, 2022, 182:106355. DOI: 10.1016/j.phrs.2022.106355.
|
[52] |
MARTIN-GALLAUSIAUX C, MARINELLI L, BLOTTIERE H M,et al. SCFA:mechanisms and functional importance in the gut[J]. Proc Nutr Soc, 2021, 80(1):37-49. DOI: 10.1017/S0029665120006916.
|
[53] |
CANFORA E E, MEEX R C R, VENEMA K,et al. Gut microbial metabolites in obesity,NAFLD and T2DM[J]. Nat Rev Endocrinol, 2019, 15(5):261-273. DOI: 10.1038/s41574-019-0156-z.
|
[54] |
|
[55] |
VADDER F D, KOVATCHEVA-DATCHARY P, ZITOUN C,et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J]. Cell Metab, 2016, 24(1):151-157. DOI: 10.1016/j.cmet.2016.06.013.
|
[56] |
BEHR C, SLOPIANKA M, HAAKE V,et al. Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats[J]. Toxicol Appl Pharmacol, 2019, 363:79-87. DOI: 10.1016/j.taap.2018.11.012.
|
[57] |
FU T, HUAN T, RAHMAN G,et al. Paired microbiome and metabolome analyses associate bile acid changes with colorectal cancer progression[J]. Cell Rep, 2023, 42(8):112997. DOI: 10.1016/j.celrep.2023.112997.
|
[58] |
COLLINS S L, STINE J G, BISANZ J E,et al. Bile acids and the gut microbiota:metabolic interactions and impacts on disease[J]. Nat Rev Microbiol, 2023, 21(4):236-247. DOI: 10.1038/s41579-022-00805-x.
|
[59] |
ZHANG J, NI Y Q, QIAN L L,et al. Decreased abundance of Akkermansia muciniphila leads to the impairment of insulin secretion and glucose homeostasis in lean type 2 diabetes[J]. Adv Sci, 2021, 8(16):e2100536. DOI: 10.1002/advs.202100536.
|
[60] |
SCHERTZER J D, TAMRAKAR A K, MAGALHÃES J G,et al. NOD1 activators link innate immunity to insulin resistance[J]. Diabetes, 2011, 60(9):2206-2215. DOI: 10.2337/db11-0004.
|
[61] |
GEORGE E S, REDDY A, NICOLL A J,et al. Impact of a Mediterranean diet on hepatic and metabolic outcomes in non-alcoholic fatty liver disease:the MEDINA randomised controlled trial[J]. Liver Int, 2022, 42(6):1308-1322. DOI: 10.1111/liv.15264.
|
[62] |
WIEËRS G, BELKHIR L, ENAUD R,et al. How probiotics affect the microbiota[J]. Front Cell Infect Microbiol, 2020, 9:454. DOI: 10.3389/fcimb.2019.00454.
|
[63] |
|
[64] |
TILLISCH K, MAYER E A, GUPTA A,et al. Brain structure and response to emotional stimuli as related to gut microbial profiles in healthy women[J]. Psychosom Med, 2017, 79(8):905-913. DOI: 10.1097/PSY.0000000000000493.
|
[65] |
REISSLAND N, EINBECK J, WOOD R,et al. Effects of maternal mental health on prenatal movement profiles in twins and singletons[J]. Acta Paediatr, 2021, 110(9):2553-2558. DOI: 10.1111/apa.15903.
|
[66] |
TAKEUCHI T, KUBOTA T, NAKANISHI Y,et al. Gut microbial carbohydrate metabolism contributes to insulin resistance[J]. Nature, 2023, 621(7978):389-395. DOI: 10.1038/s41586-023-06466-x.
|
[67] |
PERRY R J, PENG L, BARRY N A,et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature, 2016, 534(7606):213-217. DOI: 10.1038/nature18309.
|
[68] |
BHATTARAI Y, SCHMIDT B A, LINDEN D R,et al. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 313(1):G80-87. DOI: 10.1152/ajpgi.00448.2016.
|
[69] |
YANO J M, YU K, DONALDSON G P,et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2):264-276. DOI: 10.1016/j.cell.2015.02.047.
|
[70] |
|