[1] |
DESBIENS L C, GOUPIL R, MADORE F,et al. Incidence of fractures in middle-aged individuals with early chronic kidney disease:a population-based analysis of CARTaGENE[J]. Nephrol Dial Transplant, 2020, 35(10):1712-1721. DOI: 10.1093/ndt/gfz259.
|
[2] |
KAUR R, SINGH R. Mechanistic insights into CKD-MBD-related vascular calcification and its clinical implications[J]. Life Sci, 2022, 311(Pt B):121148. DOI: 10.1016/j.lfs.2022.121148.
|
[3] |
D'MARCO L, BELLASI A, RAGGI P. Cardiovascular biomarkers in chronic kidney disease:state of current research and clinical applicability[J]. Dis Markers, 2015, 2015:586569. DOI: 10.1155/2015/586569.
|
[4] |
HRUSKA K A, SEIFERT M, SUGATANI T. Pathophysiology of the chronic kidney disease-mineral bone disorder[J]. Curr Opin Nephrol Hypertens, 2015, 24(4):303-309. DOI: 10.1097/MNH.0000000000000132.
|
[5] |
RROJI M, FIGUREK A, SPASOVSKI G. Should we consider the cardiovascular system while evaluating CKD-MBD?[J]. Toxins, 2020, 12(3):140. DOI: 10.3390/toxins12030140.
|
[6] |
PAZIANAS M, MILLER P D. Osteoporosis and chronic kidney disease-mineral and bone disorder(CKD-MBD):back to basics[J]. Am J Kidney Dis, 2021, 78(4):582-589. DOI: 10.1053/j.ajkd.2020.12.024.
|
[7] |
|
[8] |
AGORO R, NI P, NOONAN M L,et al. Osteocytic FGF23 and its kidney function[J]. Front Endocrinol, 2020, 11:592. DOI: 10.3389/fendo.2020.00592.
|
[9] |
VIEGAS C, ARAÚJO N, MARREIROS C,et al. The interplay between mineral metabolism,vascular calcification and inflammation in Chronic Kidney Disease(CKD):challenging old concepts with new facts[J]. Aging, 2019, 11(12):4274-4299. DOI: 10.18632/aging.102046.
|
[10] |
HAN Y J, YOU X L, XING W H,et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts,osteocytes,and osteoclasts[J]. Bone Res, 2018, 6:16. DOI: 10.1038/s41413-018-0019-6.
|
[11] |
BALDELLI R, COUDERT A E, DEL FATTORE A. Editorial:advances in the endocrine role of the skeleton[J]. Front Endocrinol, 2020, 11:591085. DOI: 10.3389/fendo.2020.591085.
|
[12] |
MODI P K, PRABHU A, BHANDARY Y P,et al. Effect of calcium glucoheptonate on proliferation and osteogenesis of osteoblast-like cells in vitro[J]. PLoS One, 2019, 14(9):e0222240. DOI: 10.1371/journal.pone.0222240.
|
[13] |
IAQUINTA M R, LANZILLOTTI C, MAZZIOTTA C,et al. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies[J]. Theranostics, 2021, 11(13):6573-6591. DOI: 10.7150/thno.55664.
|
[14] |
ZHOU X, BEILTER A, XU Z H,et al. Wnt/β-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells[J]. Cell Death Dis, 2021, 12(6):521. DOI: 10.1038/s41419-021-03758-w.
|
[15] |
HUANG F, WANG H, ZHANG Y,et al. Synergistic effect of QNZ,an inhibitor of NF-κB signaling,and bone morphogenetic protein 2 on osteogenic differentiation in mesenchymal stem cells through fibroblast-induced yes-associated protein activation[J]. Int J Mol Sci, 2023, 24(9):7707. DOI: 10.3390/ijms24097707.
|
[16] |
SONG J, LI J, YANG F J,et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow[J]. Cell Death Dis, 2019, 10(5):336. DOI: 10.1038/s41419-019-1569-2.
|
[17] |
WANG C, LIN K L, CHANG J,et al. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials, 2013, 34(1):64-77. DOI: 10.1016/j.biomaterials.2012.09.021.
|
[18] |
GAO S Q, CHEN B W, ZHU Z L,et al. PI3K-Akt signaling regulates BMP2-induced osteogenic differentiation of mesenchymal stem cells(MSCs):a transcriptomic landscape analysis[J]. Stem Cell Res, 2023, 66:103010. DOI: 10.1016/j.scr.2022.103010.
|
[19] |
KIM J, ADACHI T. Cell condensation triggers the differentiation of osteoblast precursor cells to osteocyte-like cells[J]. Front Bioeng Biotechnol, 2019, 7:288. DOI: 10.3389/fbioe.2019.00288.
|
[20] |
KIM J M, LIN C J, STAVRE Z,et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9):2073. DOI: 10.3390/cells9092073.
|
[21] |
DELGADO-CALLE J, BELLIDO T. The osteocyte as a signaling cell[J]. Physiol Rev, 2022, 102(1):379-410. DOI: 10.1152/physrev.00043.2020.
|
[22] |
LIN X, PATIL S, GAO Y G,et al. The bone extracellular matrix in bone formation and regeneration[J]. Front Pharmacol, 2020, 11:757. DOI: 10.3389/fphar.2020.00757.
|
[23] |
|
[24] |
TRESGUERRES F G F, TORRES J, LÓPEZ-QUILES J,et al. The osteocyte:a multifunctional cell within the bone[J]. Ann Anat, 2020, 227:151422. DOI: 10.1016/j.aanat.2019.151422.
|
[25] |
CHAN W C W, TAN Z J, TO M K T,et al. Regulation and role of transcription factors in osteogenesis[J]. Int J Mol Sci, 2021, 22(11):5445. DOI: 10.3390/ijms22115445.
|
[26] |
AMARASEKARA D S, KIM S, RHO J. Regulation of osteoblast differentiation by cytokine networks[J]. Int J Mol Sci, 2021, 22(6):2851. DOI: 10.3390/ijms22062851.
|
[27] |
KARNER C M, LONG F X. Wnt signaling and cellular metabolism in osteoblasts[J]. Cell Mol Life Sci, 2017, 74(9):1649-1657. DOI: 10.1007/s00018-016-2425-5.
|
[28] |
WEI J W, SHIMAZU J, MAKINISTOGLU M P,et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation[J]. Cell, 2015, 161(7):1576-1591. DOI: 10.1016/j.cell.2015.05.029.
|
[29] |
GUNTUR A R, GERENCSER A A, LE P T,et al. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation[J]. J Bone Miner Res, 2018, 33(6):1052-1065. DOI: 10.1002/jbmr.3390.
|
[30] |
ESEN E, LONG F X. Aerobic glycolysis in osteoblasts[J]. Curr Osteoporos Rep, 2014, 12(4):433-438. DOI: 10.1007/s11914-014-0235-y.
|
[31] |
NIAN F G, QIAN Y Z, XU F Y,et al. LDHA promotes osteoblast differentiation through histone lactylation[J]. Biochem Biophys Res Commun, 2022, 615:31-35. DOI: 10.1016/j.bbrc.2022.05.028.
|
[32] |
ARPONEN M, JALAVA N, WIDJAJA N,et al. Glucose transporters GLUT1,GLUT3,and GLUT4 have different effects on osteoblast proliferation and metabolism[J]. Front Physiol, 2022, 13:1035516. DOI: 10.3389/fphys.2022.1035516.
|
[33] |
SHEN L Y, SHARMA D, YU Y L,et al. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation[J]. J Cell Sci, 2021, 134(1):jcs251645. DOI: 10.1242/jcs.251645.
|
[34] |
LEE W C, JI X, NISSIM I,et al. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts[J]. Cell Rep, 2020, 32(10):108108. DOI: 10.1016/j.celrep.2020.108108.
|
[35] |
SUH J, KIM N K, SHIM W,et al. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis[J]. Cell Metab, 2023, 35(2):345-360.e7. DOI: 10.1016/j.cmet.2023.01.003.
|
[36] |
FREY J L, LI Z, ELLIS J M,et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast[J]. Mol Cell Biol, 2015, 35(11):1979-1991. DOI: 10.1128/MCB.01343-14.
|
[37] |
KUSHWAHA P, WOLFGANG M J, RIDDLE R C. Fatty acid metabolism by the osteoblast[J]. Bone, 2018, 115:8-14. DOI: 10.1016/j.bone.2017.08.024.
|
[38] |
KEVORKOVA O, MARTINEAU C, MARTIN-FALSTRAULT L,et al. Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36(CD36)[J]. PLoS One, 2013, 8(10):e77701. DOI: 10.1371/journal.pone.0077701.
|
[39] |
VORLAND C J, BIRUETE A, LACHCIK P J,et al. Kidney disease progression does not decrease intestinal phosphorus absorption in a rat model of chronic kidney disease-mineral bone disorder[J]. J Bone Miner Res, 2020, 35(2):333-342. DOI: 10.1002/jbmr.3894.
|
[40] |
OKAMOTO K, FUJII H, GOTO S,et al. Changes in the whole/intact parathyroid hormone ratio and their clinical implications in patients with chronic kidney disease[J]. J Nephrol, 2020, 33(4):795-802. DOI: 10.1007/s40620-019-00690-3.
|
[41] |
FAYED A, EL NOKEETY M M, HEIKAL A A,et al. Serum 25-hydroxyvitamin D level is negatively associated with serum phosphorus level among stage 3a-5 chronic kidney disease patients[J]. Nefrologia, 2018, 38(5):514-519. DOI: 10.1016/j.nefro.2018.02.011.
|
[42] |
FIDAN N, INCI A, COBAN M,et al. Bone mineral density and biochemical markers of bone metabolism in predialysis patients with chronic kidney disease[J]. J Investig Med, 2016, 64(4):861-866. DOI: 10.1136/jim-2015-000043.
|
[43] |
KIM Y H, KWAK K A, GIL H W,et al. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells[J]. BMC Pharmacol Toxicol, 2013, 14:60. DOI: 10.1186/2050-6511-14-60.
|
[44] |
MOYSÉS R M A, SCHIAVI S C. Sclerostin,osteocytes,and chronic kidney disease - mineral bone disorder[J]. Semin Dial, 2015, 28(6):578-586. DOI: 10.1111/sdi.12415.
|
[45] |
PEREIRA R C, SALUSKY I B, ROSCHGER P,et al. Impaired osteocyte maturation in the pathogenesis of renal osteodystrophy[J]. Kidney Int, 2018, 94(5):1002-1012. DOI: 10.1016/j.kint.2018.08.011.
|
[46] |
KAMPROM W, TAWONSAWATRUK T, MAS-OODI S,et al. P-cresol and indoxyl sulfate impair osteogenic differentiation by triggering mesenchymal stem cell senescence[J]. Int J Med Sci, 2021, 18(3):744-755. DOI: 10.7150/ijms.48492.
|
[47] |
HEVERAN C M, ORTEGA A M, CURETON A,et al. Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice[J]. Bone, 2016, 86:1-9. DOI: 10.1016/j.bone.2016.02.006.
|
[48] |
PAWLAK K, SIEKLUCKA B, PAWLAK D. Paracrine kynurenic pathway activation in the bone of young uremic rats can antagonize anabolic effects of PTH on bone turnover and strength through the disruption of PTH-dependent molecular signaling[J]. Int J Mol Sci, 2021, 22(12):6563. DOI: 10.3390/ijms22126563.
|
[49] |
ESEN E, LEE S Y, WICE B M,et al. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling[J]. J Bone Miner Res, 2015, 30(11):2137. DOI: 10.1002/jbmr.2714.
|
[50] |
KARNER C M, ESEN E, OKUNADE A L,et al. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling[J]. J Clin Invest, 2015, 125(2):551-562. DOI: 10.1172/JCI78470.
|
[51] |
CHEN N X, O'NEILL K, CHEN X M,et al. Transglutaminase 2 accelerates vascular calcification in chronic kidney disease[J]. Am J Nephrol, 2013, 37(3):191-198. DOI: 10.1159/000347031.
|
[52] |
LUCAS S, OMATA Y, HOFMANN J,et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss[J]. Nat Commun, 2018, 9(1):55. DOI: 10.1038/s41467-017-02490-4.
|
[53] |
FENG J Q, WARD L M, LIU S G,et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism[J]. Nat Genet, 2006, 38(11):1310-1315. DOI: 10.1038/ng1905.
|
[54] |
LIMA F, MONIER-FAUGERE M C, MAWAD H,et al. FGF-23 and sclerostin in serum and bone of CKD patients[J]. Clin Nephrol, 2023, 99(5):209-218. DOI: 10.5414/CN111111.
|
[55] |
LEE W C, GUNTUR A R, LONG F X,et al. Energy metabolism of the osteoblast:implications for osteoporosis[J]. Endocr Rev, 2017, 38(3):255-266. DOI: 10.1210/er.2017-00064.
|
[56] |
SHYU J F, LIU W C, ZHENG C M,et al. Toxic effects of indoxyl sulfate on osteoclastogenesis and osteoblastogenesis[J]. Int J Mol Sci, 2021, 22(20):11265. DOI: 10.3390/ijms222011265.
|
[57] |
LIU W C, TOMINO Y, LU K C. Impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of AST-120[J]. Toxins, 2018, 10(9):367. DOI: 10.3390/toxins10090367.
|
[58] |
ITO S, OHNO Y, TANAKA T,et al. Neutrophil/lymphocyte ratio elevation in renal dysfunction is caused by distortion of leukocyte hematopoiesis in bone marrow[J]. Ren Fail, 2019, 41(1):284-293. DOI: 10.1080/0886022X.2019.1597736.
|
[59] |
RAPHAEL K L. Metabolic acidosis and subclinical metabolic acidosis in CKD[J]. J Am Soc Nephrol, 2018, 29(2):376-382. DOI: 10.1681/ASN.2017040422.
|
[60] |
KRIEGER N S, BUSHINSKY D A. Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis[J]. Am J Physiol Renal Physiol, 2017, 313(4):F882-886. DOI: 10.1152/ajprenal.00522.2016.
|
[61] |
SEBASTIAN A, HUM N R, MURUGESH D K,et al. Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts[J]. PLoS One, 2017, 12(11):e0188264. DOI: 10.1371/journal.pone.0188264.
|
[62] |
KIM S P, FREY J L, LI Z,et al. Lack of Lrp5 signaling in osteoblasts sensitizes male mice to diet-induced disturbances in glucose metabolism[J]. Endocrinology, 2017, 158(11):3805-3816. DOI: 10.1210/en.2017-00657.
|
[63] |
TU X L, DELGADO-CALLE J, CONDON K W,et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone[J]. Proc Natl Acad Sci U S A, 2015, 112(5):E478-486. DOI: 10.1073/pnas.1409857112.
|
[64] |
JIAO Z X, CHAI H, WANG S D,et al. SOST gene suppression stimulates osteocyte Wnt/β-catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis[J]. J Mol Med, 2023, 101(5):607-620. DOI: 10.1007/s00109-023-02319-2.
|
[65] |
BISSON S K, UNG R V, MAC-WAY F. Role of the Wnt/β-catenin pathway in renal osteodystrophy[J]. Int J Endocrinol, 2018, 2018:5893514. DOI: 10.1155/2018/5893514.
|
[66] |
METZGER C E, NEWMAN C L, TIPPEN S P,et al. Cortical porosity occurs at varying degrees throughout the skeleton in rats with chronic kidney disease[J]. Bone Rep, 2022, 17:101612. DOI: 10.1016/j.bonr.2022.101612.
|
[67] |
FORSTER C M, WHITE C A, TURNER M E,et al. Circulating levels of dickkopf-related protein 1 decrease as measured GFR declines and are associated with PTH levels[J]. Am J Nephrol, 2020, 51(11):871-880. DOI: 10.1159/000511658.
|
[68] |
RHEE Y, BIVI N, FARROW E,et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo[J]. Bone, 2011, 49(4):636-643. DOI: 10.1016/j.bone.2011.06.025.
|
[69] |
FAN Y, CUI C, ROSEN C J,et al. Klotho in Osx+-mesenchymal progenitors exerts pro-osteogenic and anti-inflammatory effects during mandibular alveolar bone formation and repair[J]. Signal Transduct Target Ther, 2022, 7(1):155. DOI: 10.1038/s41392-022-00957-5.
|
[70] |
KOMABA H, KALUDJEROVIC J, HU D Z,et al. Klotho expression in osteocytes regulates bone metabolism and controls bone formation[J]. Kidney Int, 2017, 92(3):599-611. DOI: 10.1016/j.kint.2017.02.014.
|
[71] |
DAI B, DAVID V, MARTIN A,et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model[J]. PLoS One, 2012, 7(9):e44161. DOI: 10.1371/journal.pone.0044161.
|
[72] |
KOMABA H, LANSKE B. Role of Klotho in bone and implication for CKD[J]. Curr Opin Nephrol Hypertens, 2018, 27(4):298-304. DOI: 10.1097/MNH.0000000000000423.
|
[73] |
PU X, CHAI Y H, GUAN L C,et al. Astragalus improve aging bone marrow mesenchymal stem cells(BMSCs)vitality and osteogenesis through VD-FGF23-Klotho axis[J]. Int J Clin Exp Pathol,2020,13(4):721-729.
|
[74] |
XIAO L P, HOMER-BOUTHIETTE C, HURLEY M M. FGF23 neutralizing antibody partially improves bone mineralization defect of HMWFGF2 isoforms in transgenic female mice[J]. J Bone Miner Res, 2018, 33(7):1347-1361. DOI: 10.1002/jbmr.3417.
|
[75] |
MINAMIZAKI T, KONISHI Y, SAKURAI K,et al. Soluble Klotho causes hypomineralization in Klotho-deficient mice[J]. J Endocrinol, 2018, 237(3):285-300. DOI: 10.1530/JOE-17-0683.
|