[1] |
SAEEDI P, PETERSOHN I, SALPEA P,et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:results from the International Diabetes Federation Diabetes Atlas,9th edition[J]. Diabetes Res Clin Pract, 2019, 157:107843. DOI: 10.1016/j.diabres.2019.107843.
|
[2] |
ALDEMIR O, TURGUT F, GOKCE C. The association between methylation levels of targeted genes and albuminuria in patients with early diabetic kidney disease[J]. Ren Fail, 2017, 39(1):597-601. DOI: 10.1080/0886022X.2017.1358180.
|
[3] |
刘小株. 基于机器学习算法的2型糖尿病肾脏疾病的辅助诊断研究[D]. 重庆:重庆医科大学,2021.
|
[4] |
AHN H S, KIM J H, JEONG H,et al. Differential urinary proteome analysis for predicting prognosis in type 2 diabetes patients with and without renal dysfunction[J]. Int J Mol Sci, 2020, 21(12):4236. DOI: 10.3390/ijms21124236.
|
[5] |
|
[6] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2010年版)[J]. 中国糖尿病杂志,2012,20(1):81-117.
|
[7] |
|
[8] |
FU Q Y, CHEN Y, LI Z H,et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images:a retrospective study[J]. EClinicalMedicine, 2020, 27:100558. DOI: 10.1016/j.eclinm.2020.100558.
|
[9] |
VICKERS A J, ELKIN E B. Decision curve analysis:a novel method for evaluating prediction models[J]. Med Decis Making, 2006, 26(6):565-574. DOI: 10.1177/0272989X06295361.
|
[10] |
ZHU X H, LI X M, ONG K,et al. Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears[J]. Nat Commun, 2021, 12(1):3541. DOI: 10.1038/s41467-021-23913-3.
|
[11] |
TAVABIE O D, KARVELLAS C J, SALEHI S,et al. A novel microRNA-based prognostic model outperforms standard prognostic models in patients with acetaminophen-induced acute liver failure[J]. J Hepatol, 2021, 75(2):424-434. DOI: 10.1016/j.jhep.2021.03.013.
|
[12] |
|
[13] |
|
[14] |
JIN H M, FENG Y Q, GUO K B,et al. Prognostic nomograms for predicting overall survival and cancer-specific survival of patients with early onset colon adenocarcinoma[J]. Front Oncol, 2020, 10:595354. DOI: 10.3389/fonc.2020.595354.
|
[15] |
ZHAO B, GABRIEL R A, VAIDA F,et al. Using machine learning to construct nomograms for patients with metastatic colon cancer[J]. Colorectal Dis, 2020, 22(8):914-922. DOI: 10.1111/codi.14991.
|
[16] |
XI C F, WANG C M, RONG G H,et al. A nomogram model that predicts the risk of diabetic nephropathy in type 2 diabetes mellitus patients:a retrospective study[J]. Int J Endocrinol, 2021, 2021:6672444. DOI: 10.1155/2021/6672444.
|
[17] |
SHI R, NIU Z Y, WU B R,et al. Nomogram for the risk of diabetic nephropathy or diabetic retinopathy among patients with type 2 diabetes mellitus based on questionnaire and biochemical indicators:a cross-sectional study[J]. Diabetes Metab Syndr Obes, 2020, 13:1215-1229. DOI: 10.2147/DMSO.S244061.
|
[18] |
|
[19] |
HUI D N, ZHANG F, LU Y Y,et al. A multifactorial risk score system for the prediction of diabetic kidney disease in patients with type 2 diabetes mellitus[J]. Diabetes Metab Syndr Obes, 2023, 16:385-395. DOI: 10.2147/DMSO.S391781.
|
[20] |
JIANG S M, FANG J Y, YU T Y,et al. Novel model predicts diabetic nephropathy in type 2 diabetes[J]. Am J Nephrol, 2020, 51(2):130-138. DOI: 10.1159/000505145.
|
[21] |
ADLER A I, STEVENS R J, MANLEY S E,et al. Development and progression of nephropathy in type 2 diabetes:the United Kingdom Prospective Diabetes Study (UKPDS 64)[J]. Kidney Int, 2003, 63(1):225-232. DOI: 10.1046/j.1523-1755.2003.00712.x.
|
[22] |
BASHIR M, ELHADD T, DABBOUS Z,et al. Optimal glycaemic and blood pressure but not lipid targets are related to a lower prevalence of diabetic microvascular complications[J]. Diabetes Metab Syndr, 2021, 15(5):102241. DOI: 10.1016/j.dsx.2021.102241.
|
[23] |
|
[24] |
|
[25] |
彭方书,赵晓溪,吕燕,等. 2型糖尿病合并高血压患者动态血糖与昼夜动态血压波动的关系[J]. 中国医药导报,2020,17(26):113-116.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
CHENG Y Q, SHANG J, LIU D,et al. Development and validation of a predictive model for the progression of diabetic kidney disease to kidney failure[J]. Ren Fail, 2020, 42(1):550-559. DOI: 10.1080/0886022X.2020.1772294.
|
[32] |
崔颖,贺建勋,林红军. 血尿酸、血肌酐水平对糖尿病肾病患者预后判断的价值[J]. 中国社区医师,2021,37(34):95-96.
|
[33] |
|