[1] |
KERMANY D S,GOLDBAUM M,CAI W J,et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell,2018,172(5):1122-1131.e9.
|
[2] |
TANG A,TAM R,CADRIN-CHÊNEVERT A,et al. Canadian association of radiologists white paper on artificial intelligence in radiology[J]. Can Assoc Radiol J,2018,69(2):120-135.
|
[3] |
PELCYGER BEN. Artificial intelligence in healthcare:Babylon Health & IBM Watson take the lead[EB/OL]. [2023-09-19].
|
[4] |
SLOMKA P J, DEY D, SITEK A,et al. Cardiac imaging:working towards fully-automated machine analysis & interpretation[J]. Expert Rev Med Devices, 2017, 14(3):197-212. DOI: 10.1080/17434440.2017.1300057.
|
[5] |
DE FAUW J, LEDSAM J R, ROMERA-PAREDES B,et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24(9):1342-1350. DOI: 10.1038/s41591-018-0107-6.
|
[6] |
HANNUN A Y, RAJPURKAR P, HAGHPANAHI M,et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1):65-69. DOI: 10.1038/s41591-018-0268-3.
|
[7] |
VASEY B, NOVAK A, ATHER S,et al. DECIDE-AI:a new reporting guideline and its relevance to artificial intelligence studies in radiology[J]. Clin Radiol, 2023, 78(2):130-136. DOI: 10.1016/j.crad.2022.09.131.
|
[8] |
PARK Y, JACKSON G P, FOREMAN M A,et al. Evaluating artificial intelligence in medicine:phases of clinical research[J]. JAMIA Open, 2020, 3(3):326-331. DOI: 10.1093/jamiaopen/ooaa033.
|
[9] |
PLOUG T, SUNDBY A, MOESLUND T B,et al. Population preferences for performance and explainability of artificial intelligence in health care:choice-based conjoint survey[J]. J Med Internet Res, 2021, 23(12):e26611. DOI: 10.2196/26611.
|
[10] |
TORNERO-COSTA R,MARTINEZ-MILLANA A,AZZOPARDI-MUSCAT N,et al. Methodological and quality flaws in the use of artificial intelligence in mental health research:systematic review[J]. JMIR Ment Health,2023,10:e42045.
|
[11] |
VASEY B,NAGENDRAN M,CAMPBELL B,et al. Publisher correction:reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence:decide-AI[J]. Nat Med,2022,28(10):2218.
|
[12] |
HIRST A,PHILIPPOU Y,BLAZEBY J,et al. No surgical innovation without evaluation:evolution and further development of the IDEAL framework and recommendations[J]. Ann Surg,2019,269(2):211-220.
|
[13] |
PARKASH O, SIDDIQUI A T S, JIWANI U,et al. Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies:a systematic review and meta-analysis[J]. Front Med, 2022, 9:1018937. DOI: 10.3389/fmed.2022.1018937.
|
[14] |
LI X M, GAO X Y, TSE G,et al. Electrocardiogram-based artificial intelligence for the diagnosis of heart failure:a systematic review and meta-analysis[J]. J Geriatr Cardiol, 2022, 19(12):970-980. DOI: 10.11909/j.issn.1671-5411.2022.12.002.
|
[15] |
GURUPUR V, WAN T T H. Inherent bias in artificial intelligence-based decision support systems for healthcare[J]. Medicina, 2020, 56(3):141. DOI: 10.3390/medicina56030141.
|
[16] |
FAGHANI S, KHOSRAVI B, ZHANG K,et al. Mitigating bias in radiology machine learning:3. performance metrics[J]. Radiol Artif Intell, 2022, 4(5):e220061. DOI: 10.1148/ryai.220061.
|
[17] |
FUJIMORI R, LIU K, SOENO S,et al. Acceptance,barriers,and facilitators to implementing artificial intelligence-based decision support systems in emergency departments:quantitative and qualitative evaluation[J]. JMIR Form Res, 2022, 6(6):e36501. DOI: 10.2196/36501.
|
[18] |
O'SULLIVAN S,NEVEJANS N,ALLEN C,et al. Legal,regulatory,and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery[J]. Int J Med Robot,2019,15(1):e1968.
|
[19] |
International Organization for Standardization. ISO 9241-11:2018 ergonomics of human-system interaction—Part 11:usability:definitions and concepts[EB/OL]. [2023-09-19].
|
[20] |
BEOOKE J. SUS—a quick and dirty usability scale[EB/OL]. [2023-09-19].
|
[21] |
REICHHELD F F. The one number you need to grow[J]. Harv Bus Rev,2003,81(12):46-54,124.
|
[22] |
British Standards Institution. BS EN 62366-1:2015+A1:2020 medical devices. Application of usability engineering to medical devices[EB/OL]. [2023-09-19].
|
[23] |
中共中央办公厅,国务院办公厅. 关于加强科技伦理治理的意见[A/OL]. (2022-03-20)[2023-09-19].
|
[24] |
国家卫生健康委,教育部,科技部,等. 涉及人的生命科学和医学研究伦理审查办法[A/OL].(2023-02-27)[2023-09-19].
|
[25] |
雷芳,杜亮,董敏,等. 关于人工智能背景下医学期刊应对医学伦理问题的思考[J]. 编辑学报,2023,35(3):263-267.
|