[1] |
VERKHRATSKY A, MATTEOLI M, PARPURA V, et al. Astrocytes as secretory cells of the central nervous system:idiosyncrasies of vesicular secretion[J]. EMBO J, 2016, 35(3):239-257. DOI: 10.15252/embj.201592705.
|
[2] |
MATHIEU M, MARTIN-JAULAR L, LAVIEU G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1):9-17. DOI: 10.1038/s41556-018-0250-9.
|
[3] |
VAN NIEL G, CHARRIN S, SIMOES S, et al. The tetraspanin CD63 regulates ESCRT-independent and-dependent endosomal sorting during melanogenesis[J]. Dev Cell, 2011, 21(4):708-721. DOI: 10.1016/j.devcel.2011.08.019.
|
[4] |
D'ANCA M, FENOGLIO C, SERPENTE M, et al. Exosome determinants of physiological aging and age-related neurodegenerative diseases[J]. Front Aging Neurosci,2019,11:232.
|
[5] |
FAN Y Y, HUO J. A1/A2 astrocytes in central nervous system injuries and diseases:angels or Devils?[J]. Neurochem Int, 2021, 148:105080. DOI: 10.1016/j.neuint.2021.105080.
|
[6] |
PATEL M R, WEAVER A M. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling[J]. Cell Rep,2021,34(10):108829.
|
[7] |
CHUN C, SMITH A S T, KIM H, et al. Astrocyte-derived extracellular vesicles enhance the survival and electrophysiological function of human cortical neurons in vitro[J]. Biomaterials, 2021, 271:120700. DOI: 10.1016/j.biomaterials.2021.120700.
|
[8] |
DOEPPNER T R, DOEHRING M, BRETSCHNEIDER E, et al. microRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation[J]. Acta Neuropathol,2013,126(2):251-265.
|
[9] |
LI Z G, MONIRUZZAMAN M, DASTGHEYB R M, et al. Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP[J]. J Extracell Vesicles, 2020, 10(2):e12035. DOI: 10.1002/jev2.12035.
|
[10] |
RAVEN F, VAN DER ZEE E A, MEERLO P, et al. The role of sleep in regulating structural plasticity and synaptic strength:implications for memory and cognitive function[J]. Sleep Med Rev, 2018, 39:3-11. DOI: 10.1016/j.smrv.2017.05.002.
|
[11] |
PROIA P, SCHIERA G, MINEO M, et al. Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor[J]. Int J Mol Med,2008,21(1):63-67.
|
[12] |
LI S S, LU Y C, DING D F, et al. Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury[J]. Aging, 2020, 12(11):10951-10968. DOI: 10.18632/aging.103308.
|
[13] |
WU Y F, JIN K Y, WANG D P, et al. VEGF loaded nanofiber membranes inhibit chronic cerebral hypoperfusion-induced cognitive dysfunction by promoting HIF-1a/VEGF mediated angiogenesis[J]. Nanomed-Nanotechnol Biol Med, 2023, 48:102639. DOI: 10.1016/j.nano.2022.102639.
|
[14] |
BELLO-MEDINA P C, RODRÍGUEZ-MARTÍNEZ E, PRADO-ALCALÁ R A, et al. Ozone pollution,oxidative stress,synaptic plasticity,and neurodegeneration[J]. Neurologia, 2022, 37(4):277-286. DOI: 10.1016/j.nrleng.2018.10.025.
|
[15] |
LONIEWSKA M M, GUPTA A, BHATIA S, et al. DNA damage and synaptic and behavioural disorders in glucose-6-phosphate dehydrogenase-deficient mice[J]. Redox Biol, 2020, 28:101332. DOI: 10.1016/j.redox.2019.101332.
|
[16] |
WANG S W, CESCA F, LOERS G, et al. Synapsin I is an oligomannose-carrying glycoprotein,acts as an oligomannose-binding lectin,and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes[J]. J Neurosci,2011,31(20):7275-7290.
|
[17] |
HIRA K, UENO Y, TANAKA R, et al. Astrocyte-derived exosomes treated with a semaphorin 3A inhibitor enhance stroke recovery via prostaglandin D2 synthase[J]. Stroke, 2018, 49(10):2483-2494. DOI: 10.1161/STROKEAHA.118.021272.
|
[18] |
HERAS-ROMERO Y, MORALES-GUADARRAMA A, SANTANA-MARTÍNEZ R, et al. Improved post-stroke spontaneous recovery by astrocytic extracellular vesicles[J]. Mol Ther, 2022, 30(2):798-815. DOI: 10.1016/j.ymthe.2021.09.023.
|
[19] |
LIU L R, LIU J C, BAO J S, et al. Interaction of microglia and astrocytes in the neurovascular unit[J]. Front Immunol, 2020, 11:1024. DOI: 10.3389/fimmu.2020.01024.
|
[20] |
IBÁÑEZ F, MONTESINOS J, UREÑA-PERALTA J R, et al. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles[J]. J Neuroinflammation,2019,16(1):136.
|
[21] |
MAO S S, SUN Q, XIAO H, et al. Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2[J]. Protein Cell, 2015, 6(7):529-540. DOI: 10.1007/s13238-015-0168-y.
|
[22] |
CHAUDHURI A D, DASTGHEYB R M, YOO S W, et al. TNFα and IL-1β modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons[J]. Cell Death Dis, 2018, 9(3):363. DOI: 10.1038/s41419-018-0369-4.
|
[23] |
PASCUA-MAESTRO R, GONZÁLEZ E, LILLO C, et al. Extracellular vesicles secreted by astroglial cells transport apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress[J]. Front Cell Neurosci, 2018, 12:526. DOI: 10.3389/fncel.2018.00526.
|
[24] |
KO G, KIM J, JEON Y J, et al. Salvia miltiorrhiza alleviates memory deficit induced by ischemic brain injury in a transient MCAO mouse model by inhibiting ferroptosis[J]. Antioxidants, 2023, 12(4):785. DOI: 10.3390/antiox12040785.
|
[25] |
GUITART K, LOERS G, BUCK F, et al. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein[J]. Glia, 2016, 64(6):896-910. DOI: 10.1002/glia.22963.
|
[26] |
DING W L, GU Q C, LIU M M, et al. Astrocytes-derived exosomes pre-treated by berberine inhibit neuroinflammation after stroke via miR-182-5p/Rac1 pathway[J]. Int Immunopharmacol, 2023, 118:110047. DOI: 10.1016/j.intimp.2023.110047.
|
[27] |
ZOU W Y, SONG Y F, LI Y M, et al. Erratum to:the role of autophagy in the correlation between neuron damage and cognitive impairment in rat chronic cerebral hypoperfusion[J]. Mol Neurobiol, 2018, 55(1):792. DOI: 10.1007/s12035-017-0416-7.
|
[28] |
CHEN W H, WANG H, ZHU Z H, et al. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis[J]. Mol Ther Nucleic Acids, 2020, 22:657-672. DOI: 10.1016/j.omtn.2020.09.027.
|
[29] |
PEI X X, LI Y C, ZHU L F, et al. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke[J]. Exp Cell Res, 2019, 382(2):111474. DOI: 10.1016/j.yexcr.2019.06.019.
|
[30] |
MA Y Z, YANG S L, HE Q Y, et al. The role of immune cells in post-stroke angiogenesis and neuronal remodeling:the known and the unknown[J]. Front Immunol, 2021, 12:784098. DOI: 10.3389/fimmu.2021.784098.
|
[31] |
ZANG Q W, WANG S R, QI Y Q, et al. Running exercise improves spatial learning and memory ability and enhances angiogenesis in the cerebral cortex via endogenous nitric oxide[J]. Behav Brain Res, 2023, 439:114243. DOI: 10.1016/j.bbr.2022.114243.
|
[32] |
HOSSEINI L, KARIMIPOUR M, SEYEDAGHAMIRI F, et al. Intranasal administration of mitochondria alleviated cognitive impairments and mitochondrial dysfunction in the photothrombotic model of mPFC stroke in mice[J]. J Stroke Cerebrovasc Dis, 2022, 31(12):106801. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106801.
|
[33] |
LIN M M, LIU N, QIN Z H, et al. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases[J]. Acta Pharmacol Sin, 2022, 43(10):2439-2447. DOI: 10.1038/s41401-022-00879-6.
|
[34] |
TODKAR K, CHIKHI L, DESJARDINS V, et al. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs[J]. Nat Commun, 2021, 12(1):1971. DOI: 10.1038/s41467-021-21984-w.
|
[35] |
MATHEOUD D, SUGIURA A, BELLEMARE-PELLETIER A, et al. Parkinson's disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation[J]. Cell, 2016, 166(2):314-327. DOI: 10.1016/j.cell.2016.05.039.
|
[36] |
HA B G, HEO J Y, JANG Y J, et al. Depletion of mitochondrial components from extracellular vesicles secreted from astrocytes in a mouse model of fragile X syndrome[J]. Int J Mol Sci, 2021, 22(1):410. DOI: 10.3390/ijms22010410.
|
[37] |
PELUSO M J, DEEKS S G, MUSTAPIC M, et al. SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19[J]. Ann Neurol, 2022, 91(6):772-781. DOI: 10.1002/ana.26350.
|
[38] |
DEUS C M, TAVARES H, BEATRIZ M, et al. Mitochondrial damage-associated molecular patterns content in extracellular vesicles promotes early inflammation in neurodegenerative disorders[J]. Cells, 2022, 11(15):2364. DOI: 10.3390/cells11152364.
|
[39] |
KIM K M, MENG Q, PEREZ DE ACHA O, et al. Mitochondrial RNA in Alzheimer's disease circulating extracellular vesicles[J]. Front Cell Dev Biol, 2020, 8:581882. DOI: 10.3389/fcell.2020.581882.
|
[40] |
HAYAKAWA K, ESPOSITO E, WANG X H, et al. Transfer of mitochondria from astrocytes to neurons after stroke[J]. Nature, 2016, 535(7613):551-555. DOI: 10.1038/nature18928.
|
[41] |
TASHIRO R, OZAKI D, BAUTISTA-GARRIDO J, et al. Young astrocytic mitochondria attenuate the elevated level of CCL11 in the aged mice,contributing to cognitive function improvement[J]. Int J Mol Sci, 2023, 24(6):5187. DOI: 10.3390/ijms24065187.
|
[42] |
LI Y J, WU J Y, LIU J H, et al. From blood to brain:blood cell-based biomimetic drug delivery systems[J]. Drug Deliv, 2021, 28(1):1214-1225. DOI: 10.1080/10717544.2021.1937384.
|
[43] |
DICKENS A M, TOVAR-Y-ROMO L B, YOO S W, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions[J]. Sci Signal, 2017, 10(473):eaai7696. DOI: 10.1126/scisignal.aai7696.
|
[44] |
XU L L, CAO H, XIE Y, et al. Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation[J]. Brain Res, 2019, 1717:66-73. DOI: 10.1016/j.brainres.2019.04.009.
|
[45] |
ZHANG W Q, HONG J, ZHANG H W, et al. Astrocyte-derived exosomes protect hippocampal neurons after traumatic brain injury by suppressing mitochondrial oxidative stress and apoptosis[J]. Aging, 2021, 13(17):21642-21658. DOI: 10.18632/aging.203508.
|
[46] |
BURLACU C C, CIOBANU D, BADULESCU A V, et al. Circulating microRNAs and extracellular vesicle-derived microRNAs as predictors of functional recovery in ischemic stroke patients:a systematic review and meta-analysis[J]. Int J Mol Sci, 2022, 24(1):251. DOI: 10.3390/ijms24010251.
|
[47] |
GOETZL E J, MUSTAPIC M, KAPOGIANNIS D, et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease[J]. FASEB J, 2016, 30(11):3853-3859. DOI: 10.1096/fj.201600756r.
|
[48] |
GOETZL E J, SCHWARTZ J B, ABNER E L, et al. High complement levels in astrocyte-derived exosomes of Alzheimer disease[J]. Ann Neurol, 2018, 83(3):544-552. DOI: 10.1002/ana.25172.
|