[1] |
ILIFF J J, WANG M H, LIAO Y H,et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes,including amyloid Β[J]. Sci Transl Med, 2012, 4(147):147ra111. DOI: 10.1126/scitranslmed.3003748.
|
[2] |
LOUVEAU A, SMIRNOV I, KEYES T J,et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560):337-341. DOI: 10.1038/nature14432.
|
[3] |
ASPELUND A, ANTILA S, PROULX S T,et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J]. J Exp Med, 2015, 212(7):991-999. DOI: 10.1084/jem.20142290.
|
[4] |
ABSINTA M, HA S K, NAIR G,et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI[J]. Elife, 2017, 6:e29738. DOI: 10.7554/eLife.29738.
|
[5] |
AHN J H, CHO H, KIM J H,et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J]. Nature, 2019, 572(7767):62-66. DOI: 10.1038/s41586-019-1419-5.
|
[6] |
MØLLGÅRD K, BEINLICH F R M, KUSK P,et al. A mesothelium divides the subarachnoid space into functional compartments[J]. Science, 2023, 379(6627):84-88. DOI: 10.1126/science.adc8810.
|
[7] |
XIE L L, KANG H Y, XU Q W,et al. Sleep drives metabolite clearance from the adult brain[J]. Science, 2013, 342(6156):373-377. DOI: 10.1126/science.1241224.
|
[8] |
RUSTENHOVEN J, DRIEU A, MAMULADZE T,et al. Functional characterization of the dural sinuses as a neuroimmune interface[J]. Cell, 2021, 184(4):1000-1016.e27. DOI: 10.1016/j.cell.2020.12.040.
|
[9] |
XU J J, SU Y, FU J Y,et al. Glymphatic pathway in sporadic cerebral small vessel diseases:from bench to bedside[J]. Ageing Res Rev, 2023, 86:101885. DOI: 10.1016/j.arr.2023.101885.
|
[10] |
DE LEON M J, LI Y, OKAMURA N,et al. Cerebrospinal fluid clearance in alzheimer disease measured with dynamic PET[J]. J Nucl Med, 2017, 58(9):1471-1476. DOI: 10.2967/jnumed.116.187211.
|
[11] |
ILIFF J J, LEE H, YU M,et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI[J]. J Clin Invest, 2013, 123(3):1299-1309. DOI: 10.1172/JCI67677.
|
[12] |
KANDA T, NAKAI, HAGIWARA A,et al. Distribution and chemical forms of gadolinium in the brain:a review[J]. Br J Radiol, 2017, 90(1079):20170115. DOI: 10.1259/bjr.20170115.
|
[13] |
EIDE P K, RINGSTAD G. MRI with intrathecal MRI gadolinium contrast medium administration:a possible method to assess glymphatic function in human brain[J]. Acta Radiol Open, 2015, 4(11):2058460115609635. DOI: 10.1177/2058460115609635.
|
[14] |
RINGSTAD G, VATNEHOL S A S, EIDE P K. Glymphatic MRI in idiopathic normal pressure hydrocephalus[J]. Brain, 2017, 140(10):2691-2705. DOI: 10.1093/brain/awx191.
|
[15] |
WATTS R, STEINKLEIN J M, WALDMAN L,et al. Measuring glymphatic flow in man using quantitative contrast-enhanced MRI[J]. AJNR Am J Neuroradiol, 2019, 40(4):648-651. DOI: 10.3174/ajnr.A5931.
|
[16] |
DING X B, WANG X X, XIA D H,et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease[J]. Nat Med, 2021, 27(3):411-418. DOI: 10.1038/s41591-020-01198-1.
|
[17] |
WANG J Q, TIAN Y M, QIN C,et al. Impaired glymphatic drainage underlying obstructive sleep apnea is associated with cognitive dysfunction[J]. J Neurol, 2023, 270(4):2204-2216. DOI: 10.1007/s00415-022-11530-z.
|
[18] |
LEE S, YOO R E, CHOI S H,et al. Contrast-enhanced MRI T1 mapping for quantitative evaluation of putative dynamic glymphatic activity in the human brain in sleep-wake states[J]. Radiology, 2021, 300(3):661-668. DOI: 10.1148/radiol.2021203784.
|
[19] |
COWPER S E, ROBIN H S, STEINBERG S M,et al. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients[J]. Lancet, 2000, 356(9234):1000-1001. DOI: 10.1016/S0140-6736(00)02694-5.
|
[20] |
KANDA T, ISHII K, KAWAGUCHI H,et al. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images:relationship with increasing cumulative dose of a gadolinium-based contrast material[J]. Radiology, 2014, 270(3):834-841. DOI: 10.1148/radiol.13131669.
|
[21] |
ROBERTS D R, HOLDEN K R. Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast[J]. Brain Dev, 2016, 38(3):331-336. DOI: 10.1016/j.braindev.2015.08.009.
|
[22] |
MURATA N, GONZALEZ-CUYAR L F, MURATA K,et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue:preliminary results from 9 patients with normal renal function[J]. Invest Radiol, 2016, 51(7):447-453. DOI: 10.1097/RLI.0000000000000252.
|
[23] |
MCDONALD R J, MCDONALD J S, KALLMES D F,et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging[J]. Radiology, 2015, 275(3):772-782. DOI: 10.1148/radiol.15150025.
|
[24] |
RASSCHAERT M, WELLER R O, SCHROEDER J A,et al. Retention of gadolinium in brain parenchyma:pathways for speciation,access,and distribution. A critical review[J]. J Magn Reson Imaging, 2020, 52(5):1293-1305. DOI: 10.1002/jmri.27124.
|
[25] |
EDEKLEV C S, HALVORSEN M, LØVLAND G,et al. Intrathecal use of gadobutrol for glymphatic MR imaging:prospective safety study of 100 patients[J]. AJNR Am J Neuroradiol, 2019, 40(8):1257-1264. DOI: 10.3174/ajnr.A6136.
|
[26] |
PATEL M, ATYANI A, SALAMEH J P,et al. Safety of intrathecal administration of gadolinium-based contrast agents:a systematic review and meta-analysis[J]. Radiology, 2020, 297(1):75-83. DOI: 10.1148/radiol.2020191373.
|
[27] |
EIDE P K, VALNES L M, PRIPP A H,et al. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus[J]. J Cereb Blood Flow Metab, 2020, 40(9):1849-1858. DOI: 10.1177/0271678X19874790.
|
[28] |
HOVD M H, MARIUSSEN E, UGGERUD H,et al. Population pharmacokinetic modeling of CSF to blood clearance:prospective tracer study of 161 patients under work-up for CSF disorders[J]. Fluids Barriers CNS, 2022, 19(1):55. DOI: 10.1186/s12987-022-00352-w.
|
[29] |
EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scan [EB/OL]. [2017-02-20].
|
[30] |
TAOKA T, MASUTANI Y, KAWAI H,et al. Evaluation of glymphatic system activity with the diffusion MR technique:diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4):172-178. DOI: 10.1007/s11604-017-0617-z.
|
[31] |
HSU J L, WEI Y C, TOH C H,et al. Magnetic resonance images implicate that glymphatic alterations mediate cognitive dysfunction in alzheimer disease[J]. Ann Neurol, 2023, 93(1):164-174. DOI: 10.1002/ana.26516.
|
[32] |
ZHANG W H, ZHOU Y, WANG J N,et al. Glymphatic clearance function in patients with cerebral small vessel disease[J]. Neuroimage, 2021, 238:118257. DOI: 10.1016/j.neuroimage.2021.118257.
|
[33] |
YANG G W, DENG N, LIU Y,et al. Evaluation of glymphatic system using diffusion MR technique in T2DM cases[J]. Front Hum Neurosci, 2020, 14:300. DOI: 10.3389/fnhum.2020.00300.
|
[34] |
QIN Y, LI X, QIAO Y Q,et al. DTI-ALPS:an MR biomarker for motor dysfunction in patients with subacute ischemic stroke[J]. Front Neurosci, 2023, 17:1132393. DOI: 10.3389/fnins.2023.1132393.
|
[35] |
KAMAGATA K, ANDICA C, TAKABAYASHI K,et al. Association of MRI indices of glymphatic system with amyloid deposition and cognition in mild cognitive impairment and alzheimer disease[J]. Neurology, 2022, 99(24):e2648-2660. DOI: 10.1212/WNL.0000000000201300.
|
[36] |
KIKUTA J, KAMAGATA K, TAOKA T,et al. Water diffusivity changes along the perivascular space after lumboperitoneal shunt surgery in idiopathic normal pressure Hydrocephalus[J]. Front Neurol, 2022, 13:843883. DOI: 10.3389/fneur.2022.843883.
|
[37] |
KIKUTA J, KAMAGATA K, TAKABAYASHI K,et al. An investigation of water diffusivity changes along the perivascular space in elderly subjects with hypertension[J]. AJNR Am J Neuroradiol, 2022, 43(1):48-55. DOI: 10.3174/ajnr.A7334.
|
[38] |
GU L Y, DAI S B, GUO T,et al. Noninvasive neuroimaging provides evidence for deterioration of the glymphatic system in Parkinson's disease relative to essential tremor[J]. Parkinsonism Relat Disord, 2023, 107:105254. DOI: 10.1016/j.parkreldis.2022.105254.
|
[39] |
PARK J H, BAE Y J, KIM J S,et al. Glymphatic system evaluation using diffusion tensor imaging in patients with traumatic brain injury[J]. Neuroradiology, 2023, 65(3):551-557. DOI: 10.1007/s00234-022-03073-x.
|
[40] |
LEE H J, LEE D A, SHIN K J,et al. Glymphatic system dysfunction in patients with juvenile myoclonic epilepsy[J]. J Neurol, 2022, 269(4):2133-2139. DOI: 10.1007/s00415-021-10799-w.
|
[41] |
JACOBS J, STICH J, ZAHNEISEN B,et al. Fast fMRI provides high statistical power in the analysis of epileptic networks[J]. Neuroimage, 2014, 88:282-294. DOI: 10.1016/j.neuroimage.2013.10.018.
|
[42] |
ILIFF J J, WANG M H, ZEPPENFELD D M,et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain[J]. J Neurosci, 2013, 33(46):18190-18199. DOI: 10.1523/JNEUROSCI.1592-13.2013.
|
[43] |
THRANE A S, RANGROO THRANE V, NEDERGAARD M. Drowning stars:reassessing the role of astrocytes in brain edema[J]. Trends Neurosci, 2014, 37(11):620-628. DOI: 10.1016/j.tins.2014.08.010.
|
[44] |
KIVINIEMI V, WANG X D, KORHONEN V,et al. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?[J]. J Cereb Blood Flow Metab, 2016, 36(6):1033-1045. DOI: 10.1177/0271678X15622047.
|
[45] |
KIM J, WU Y, GUO Y K,et al. A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging[J]. Contrast Media Mol Imaging, 2015, 10(3):163-178. DOI: 10.1002/cmmi.1628.
|
[46] |
SUN P Z. Demonstration of accurate multi-pool chemical exchange saturation transfer MRI quantification - Quasi-steady-state reconstruction empowered quantitative CEST analysis[J]. J Magn Reson, 2023, 348:107379. DOI: 10.1016/j.jmr.2023.107379.
|