[1] |
|
[2] |
SLAVICH G M, IRWIN M R. From stress to inflammation and major depressive disorder:a social signal transduction theory of depression[J]. Psychol Bull, 2014, 140(3):774-815. DOI: 10.1037/a0035302.
|
[3] |
JIAO H Y, YANG H J, YAN Z Y,et al. Traditional Chinese formula Xiaoyaosan alleviates depressive-like behavior in CUMS mice by regulating PEBP1-GPX4-mediated ferroptosis in the Hippocampus[J]. Neuropsychiatr Dis Treat, 2021, 17:1001-1019. DOI: 10.2147/NDT.S302443.
|
[4] |
SHAO X J, ZHU G. Associations among monoamine neurotransmitter pathways,personality traits,and major depressive disorder[J]. Front Psychiatry, 2020, 11:381. DOI: 10.3389/fpsyt.2020.00381.
|
[5] |
JIANG Y, ZOU D, LI Y M,et al. Monoamine neurotransmitters control basic emotions and affect major depressive disorders[J]. Pharmaceuticals (Basel), 2022, 15(10):1203. DOI: 10.3390/ph15101203.
|
[6] |
VAVÁKOVÁ M, DURACKOVÁ Z, TREBATICKÁ J. Markers of oxidative stress and neuroprogression in depression disorder[J]. Oxid Med Cell Longev, 2015, 2015:898393. DOI: 10.1155/2015/898393.
|
[7] |
MÉNARD C, HODES G E, RUSSO S J. Pathogenesis of depression:insights from human and rodent studies[J]. Neuroscience, 2016, 321:138-162. DOI: 10.1016/j.neuroscience.2015.05.053.
|
[8] |
VOGELZANGS N, DUIVIS H E, BEEKMAN A T,et al. Association of depressive disorders,depression characteristics and antidepressant medication with inflammation[J]. Transl Psychiatry, 2012, 2(2):e79. DOI: 10.1038/tp.2012.8.
|
[9] |
KIECOLT-GLASER J K, DERRY H M, FAGUNDES C P. Inflammation:depression fans the flames and feasts on the heat[J]. Am J Psychiatry, 2015, 172(11):1075-1091. DOI: 10.1176/appi.ajp.2015.15020152.
|
[10] |
BENEDETTI F, ZANARDI R, MAZZA M G. Antidepressant psychopharmacology:is inflammation a future target?[J]. Int Clin Psychopharmacol, 2022, 37(3):79-81. DOI: 10.1097/yic.0000000000000403.
|
[11] |
SHARMA S, AKUNDI R S. Mitochondria:a connecting link in the major depressive disorder jigsaw[J]. Curr Neuropharmacol, 2019, 17(6):550-562. DOI: 10.2174/1570159x16666180302120322.
|
[12] |
CASARIL A M, DANTZER R, BAS-ORTH C. Neuronal mitochondrial dysfunction and bioenergetic failure in inflammation-associated depression[J]. Front Neurosci, 2021, 15:725547. DOI: 10.3389/fnins.2021.725547.
|
[13] |
CHEN W J, DU J K, HU X,et al. Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior[J]. Physiol Behav, 2017, 182:54-61. DOI: 10.1016/j.physbeh.2017.09.024.
|
[14] |
HAN X K, GAO Y, YIN X,et al. The mechanism of electroacupuncture for depression on basic research:a systematic review[J]. Chin Med, 2021, 16(1):10. DOI: 10.1186/s13020-020-00421-y.
|
[15] |
MIKULSKA J, JUSZCZYK G, GAWRONSKA-GRZYWACZ M,et al. HPA axis in the pathomechanism of depression and schizophrenia:new therapeutic strategies based on its participation[J]. Brain Sci, 2021, 11(10):1298. DOI: 10.3390/brainsci11101298.
|
[16] |
WANG Y, GU C Y, EWING A G. Single-vesicle electrochemistry following repetitive stimulation reveals a mechanism for plasticity changes with iron deficiency[J]. Angew Chem Int Ed Engl, 2022, 61(20):e202200716. DOI: 10.1002/anie.202200716.
|
[17] |
FERREIRA A, NEVES P, GOZZELINO R. Multilevel impacts of iron in the brain:the cross talk between neurophysiological mechanisms,cognition,and social behavior[J]. Pharmaceuticals (Basel), 2019, 12(3):126. DOI: 10.3390/ph12030126.
|
[18] |
DUAN X X, XIE Y H, ZHU X F,et al. Quantitative susceptibility mapping of brain iron deposition in patients with recurrent depression[J]. Psychiatry Investig, 2022, 19(8):668-675. DOI: 10.30773/pi.2022.0110.
|
[19] |
DIXON S J, LEMBERG K M, LAMPRECHT M R,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042.
|
[20] |
JAKARIA M, BELAIDI A A, BUSH A I,et al. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease[J]. J Neurochem, 2021, 159(5):804-825. DOI: 10.1111/jnc.15519.
|
[21] |
MAHONEY-SÁNCHEZ L, BOUCHAOUI H, AYTON S,et al. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease[J]. Prog Neurobiol, 2021, 196:101890. DOI: 10.1016/j.pneurobio.2020.101890.
|
[22] |
REICHERT C O, DE FREITAS F A, SAMPAIO-SILVA J,et al. Ferroptosis mechanisms involved in neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21(22):8765. DOI: 10.3390/ijms21228765.
|
[23] |
YAO S, ZHONG Y, XU Y H,et al. Quantitative susceptibility mapping reveals an association between brain iron load and depression severity[J]. Front Hum Neurosci, 2017, 11:442. DOI: 10.3389/fnhum.2017.00442.
|
[24] |
BERTHOU C, ILIOU J P, BARBA D. Iron,neuro-bioavailability and depression[J]. EJHaem, 2022, 3(1):263-275. DOI: 10.1002/jha2.321.
|
[25] |
LIANG S S, LU Y, LI Z X,et al. Iron aggravates the depressive phenotype of stressed mice by compromising the glymphatic system[J]. Neurosci Bull, 2020, 36(12):1542-1546. DOI: 10.1007/s12264-020-00539-x.
|
[26] |
YU Y, YAN Y, NIU F L,et al. Ferroptosis:a cell death connecting oxidative stress,inflammation and cardiovascular diseases[J]. Cell Death Discov, 2021, 7(1):193. DOI: 10.1038/s41420-021-00579-w.
|
[27] |
MAES M, MELTZER H Y, BUCKLEY P,et al. Plasma-soluble interleukin-2 and transferrin receptor in schizophrenia and major depression[J]. Eur Arch Psychiatry Clin Neurosci, 1995, 244(6):325-329. DOI: 10.1007/BF02190412.
|
[28] |
ZHANG W H, ZHOU Y, LI Q Q,et al. Brain iron deposits in thalamus is an independent factor for depressive symptoms based on quantitative susceptibility mapping in an older adults community population[J]. Front Psychiatry, 2019, 10:734. DOI: 10.3389/fpsyt.2019.00734.
|
[29] |
YAO S, ZHONG Y, XU Y H,et al. Quantitative susceptibility mapping reveals an association between brain iron load and depression severity[J]. Front Hum Neurosci, 2017, 11:442. DOI: 10.3389/fnhum.2017.00442.
|
[30] |
CHANG X, MA M X, CHEN L P,et al. Identification and characterization of elevated expression of transferrin and its receptor TfR1 in mouse models of depression[J]. Brain Sci, 2022, 12(10):1267. DOI: 10.3390/brainsci12101267.
|
[31] |
MAAROUFI K, AMMARI M, JELJELI M,et al. Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate[J]. Physiol Behav, 2009, 96(2):343-349. DOI: 10.1016/j.physbeh.2008.10.019.
|
[32] |
KIM J, WESSLING-RESNICK M. Iron and mechanisms of emotional behavior[J]. J Nutr Biochem, 2014, 25(11):1101-1107. DOI: 10.1016/j.jnutbio.2014.07.003.
|
[33] |
YOUDIM M B H. Brain iron deficiency and excess; cognitive impairment and neurodegenration with involvement of striatum and hippocampus[J]. Neurotox Res, 2008, 14(1):45-56. DOI: 10.1007/BF03033574.
|
[34] |
MEISER J, WEINDL D, HILLER K. Complexity of dopamine metabolism[J]. Cell Commun Signal, 2013, 11(1):34. DOI: 10.1186/1478-811X-11-34.
|
[35] |
YU Y, YAN Y, NIU F L,et al. Ferroptosis:a cell death connecting oxidative stress,inflammation and cardiovascular diseases[J]. Cell Death Discov, 2021, 7(1):193. DOI: 10.1038/s41420-021-00579-w.
|
[36] |
YU M Y, GAI C C, LI Z,et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells[J]. Cancer Sci, 2019, 110(10):3173-3182. DOI: 10.1111/cas.14181.
|
[37] |
ZHU L, HAN B, WANG L P,et al. The association between serum ferritin levels and post-stroke depression[J]. J Affect Disord, 2016, 190:98-102. DOI: 10.1016/j.jad.2015.09.074.
|
[38] |
KNYSZYNSKA A, RADECKA A, ZABIELSKA P,et al. The role of iron metabolism in fatigue,depression,and quality of life in multiple sclerosis patients[J]. Int J Environ Res Public Health, 2020, 17(18):6818. DOI: 10.3390/ijerph17186818.
|
[39] |
CAO H, ZUO C C, HUANG Y Q,et al. Hippocampal proteomic analysis reveals activation of necroptosis and ferroptosis in a mouse model of chronic unpredictable mild stress-induced depression[J]. Behav Brain Res, 2021, 407:113261. DOI: 10.1016/j.bbr.2021.113261.
|
[40] |
MEHRPOUYA S, NAHAVANDI A, KHOJASTEH F,et al. Iron administration prevents BDNF decrease and depressive-like behavior following chronic stress[J]. Brain Res, 2015, 1596:79-87. DOI: 10.1016/j.brainres.2014.10.057.
|
[41] |
UZUNGIL V, TRAN H, AITKEN C,et al. Novel antidepressant-like properties of the iron Chelator deferiprone in a mouse model of depression[J]. Neurotherapeutics, 2022, 19(5):1662-1685. DOI: 10.1007/s13311-022-01257-0.
|
[42] |
ZHANG W X, YU M Q, ZHANG Q Y,et al. DFO treatment protects against depression-like behaviors and cognitive impairment in CUMS mice[J]. Brain Res Bull, 2022, 187:75-84. DOI: 10.1016/j.brainresbull.2022.06.016.
|
[43] |
HOROWITZ M P, GREENAMYRE J T. Mitochondrial iron metabolism and its role in neurodegeneration[J]. J Alzheimer's Dis, 2010, 20(s2):S551-568. DOI: 10.3233/jad-2010-100354.
|
[44] |
CAMPANELLA A, ROVELLI E, SANTAMBROGIO P,et al. Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability:hypothesis for a protective role in Friedreich ataxia[J]. Hum Mol Genet, 2009, 18(1):1-11. DOI: 10.1093/hmg/ddn308.
|
[45] |
ALLEN J, ROMAY-TALLON R, BRYMER K J,et al. Mitochondria and mood:mitochondrial dysfunction as a key player in the manifestation of depression[J]. Front Neurosci, 2018, 12:386. DOI: 10.3389/fnins.2018.00386.
|
[46] |
GIMÉNEZ-PALOMO A, DODD S, ANMELLA G,et al. The role of mitochondria in mood disorders:from physiology to pathophysiology and to treatment[J]. Front Psychiatry, 2021, 12:546801. DOI: 10.3389/fpsyt.2021.546801.
|
[47] |
DENG L Y, HE S S, GUO N Q,et al. Molecular mechanisms of ferroptosis and relevance to inflammation[J]. Inflamm Res, 2023, 72(2):281-299. DOI: 10.1007/s00011-022-01672-1.
|
[48] |
NICOLE C, BROWN. An updated meta-analysis of oxidative stress markers in bipolar disorder[J]. Psychiatry Res, 2014, 218(1/2):61-68. DOI: 10.1016/j.psychres.2014.04.005.
|
[49] |
IWAMOTO K, BUNDO M, KATO T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia,as revealed by large-scale DNA microarray analysis[J]. Hum Mol Genet, 2005, 14(2):241-253. DOI: 10.1093/hmg/ddi022.
|
[50] |
CATALDO A M, MCPHIE D L, LANGE N T,et al. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder[J]. Am J Pathol, 2010, 177(2):575-585. DOI: 10.2353/ajpath.2010.081068.
|
[51] |
FATTAL O, LINK J, QUINN K,et al. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies[J]. CNS Spectr, 2007, 12(6):429-438. DOI: 10.1017/s1092852900015303.
|
[52] |
|
[53] |
REZIN G T, CARDOSO M R, GONÇALVES C L,et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression[J]. Neurochem Int, 2008, 53(6/7/8):395-400. DOI: 10.1016/j.neuint.2008.09.012.
|
[54] |
SHU X D, SUN Y M, SUN X Y,et al. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression[J]. Cell Death Dis, 2019, 10(8):577. DOI: 10.1038/s41419-019-1813-9.
|
[55] |
DANG R Z, WANG M Y, LI X H,et al. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway[J]. J Neuroinflammation, 2022, 19(1):41. DOI: 10.1186/s12974-022-02400-6.
|
[56] |
WANG Y, WANG S W, XIN Y,et al. Hydrogen sulfide alleviates the anxiety-like and depressive-like behaviors of type 1 diabetic mice via inhibiting inflammation and ferroptosis[J]. Life Sci, 2021, 278:119551. DOI: 10.1016/j.lfs.2021.119551.
|
[57] |
ZHANG M K, LYU D B, WANG F,et al. Ketamine may exert rapid antidepressant effects through modulation of neuroplasticity,autophagy,and ferroptosis in the habenular nucleus[J]. Neuroscience, 2022, 506:29-37. DOI: 10.1016/j.neuroscience.2022.10.015.
|
[58] |
LU S F, LI C Y, JIN X H,et al. Baicalin improves the energy levels in the prefrontal cortex of mice exposed to chronic unpredictable mild stress[J]. Heliyon, 2022, 8(12):e12083. DOI: 10.1016/j.heliyon.2022.e12083.
|
[59] |
LI J N, GAO W, ZHAO Z H,et al. Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis[J]. Mol Neurobiol, 2022, 59(5):2855-2873. DOI: 10.1007/s12035-022-02740-7.
|
[60] |
PALLOTTI F, BERGAMINI C, LAMPERTI C,et al. The roles of coenzyme Q in disease:direct and indirect involvement in cellular functions[J]. Int J Mol Sci, 2021, 23(1):128. DOI: 10.3390/ijms23010128.
|
[61] |
RIZZARDI N, LIPARULO I, ANTONELLI G,et al. Coenzyme Q10 phytosome formulation improves CoQ10 bioavailability and mitochondrial functionality in cultured cells[J]. Antioxidants (Basel), 2021, 10(6):927. DOI: 10.3390/antiox10060927.
|
[62] |
FORESTER B P, HARPER D G, GEORGAKAS J,et al. Antidepressant effects of open label treatment with coenzyme Q10 in geriatric bipolar depression[J]. J Clin Psychopharmacol, 2015, 35(3):338-340. DOI: 10.1097/JCP.0000000000000326.
|
[63] |
LI J Q, HUANG S Q, WANG Q,et al. Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction[J]. Phytomedicine, 2023, 109:154601. DOI: 10.1016/j.phymed.2022.154601.
|
[64] |
TRIPATHI A, SCAINI G, BARICHELLO T,et al. Mitophagy in depression:Pathophysiology and treatment targets[J]. Mitochondrion, 2021, 61:1-10. DOI: 10.1016/j.mito.2021.08.016.
|
[65] |
BATTAGLIA A M, CHIRILLO R, AVERSA I,et al. Ferroptosis and cancer:mitochondria meet the "iron maiden" cell death[J]. Cells, 2020, 9(6):1505. DOI: 10.3390/cells9061505.
|
[66] |
HAMEED S, NASER I A, AL GHUSSEIN M A,et al. Is iron deficiency a risk factor for postpartum depression?A case-control study in the Gaza Strip,Palestine[J]. Public Health Nutr, 2022, 25(6):1631-1638. DOI: 10.1017/s1368980021003761.
|