[1] |
MALAKAR A K, CHOUDHURY D, HALDER B,et al. A review on coronary artery disease,its risk factors,and therapeutics[J]. J Cell Physiol, 2019, 234(10):16812-16823. DOI: 10.1002/jcp.28350.
|
[2] |
SEVERINO P, D'AMATO A, PUCCI M,et al. Ischemic heart disease pathophysiology paradigms overview:from plaque activation to microvascular dysfunction[J]. Int J Mol Sci, 2020, 21(21):8118. DOI: 10.3390/ijms21218118.
|
[3] |
RIDKER P M. Anticytokine agents:targeting interleukin signaling pathways for the treatment of atherothrombosis[J]. Circ Res, 2019, 124(3):437-450. DOI: 10.1161/CIRCRESAHA.118.313129.
|
[4] |
PEDRO-BOTET J, CLIMENT E, BENAIGES D. Atherosclerosis and inflammation. New therapeutic approaches[J]. Med Clin:Barc, 2020, 155(6):256-262. DOI: 10.1016/j.medcli.2020.04.024.
|
[5] |
SHIRAZI L F, BISSETT J, ROMEO F,et al. Role of inflammation in heart failure[J]. Curr Atheroscler Rep, 2017, 19(6):27. DOI: 10.1007/s11883-017-0660-3.
|
[6] |
MONTARELLO N J, NGUYEN M T, WONG D T L,et al. Inflammation in coronary atherosclerosis and its therapeutic implications[J]. Cardiovasc Drugs Ther, 2022, 36(2):347-362. DOI: 10.1007/s10557-020-07106-6.
|
[7] |
CHENG H, HAO S, LIU Y F,et al. Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation[J]. Blood, 2015, 126(11):1302-1313. DOI: 10.1182/blood-2015-01-623645.
|
[8] |
李霞,王枚,马依彤,等. 新疆维吾尔族、哈萨克族、汉族冠心病差异基因筛选及功能路径分析[J]. 中国动脉硬化杂志,2016,24(12):1238-1242.
|
[9] |
|
[10] |
GUO F X, SHA Y H, HU B,et al. Correlation of long non-coding RNA LncRNA-FA2H-2 with inflammatory markers in the peripheral blood of patients with coronary heart disease[J]. Front Cardiovasc Med, 2021, 8:682959. DOI: 10.3389/fcvm.2021.682959.
|
[11] |
LIN F, ZHAO G, CHEN Z,et al. circRNA-miRNA association for coronary heart disease[J]. Mol Med Rep, 2019, 19(4):2527-2536. DOI: 10.3892/mmr.2019.9905.
|
[12] |
KNUDSEN A M, EILERTSEN I, KIELLAND S,et al. Expression and prognostic value of the transcription factors EGR1 and EGR3 in gliomas[J]. Sci Rep, 2020, 10(1):9285. DOI: 10.1038/s41598-020-66236-x.
|
[13] |
FERNANDES M O, TOURTELLOTTE W G. Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis[J]. J Neurosci, 2015, 35(14):5566-5578. DOI: 10.1523/JNEUROSCI.0241-15.2015.
|
[14] |
PFAFFENSELLER B, KAPCZINSKI F, GALLITANO A L,et al. EGR3 immediate early gene and the brain-derived neurotrophic factor in bipolar disorder[J]. Front Behav Neurosci, 2018, 12:15. DOI: 10.3389/fnbeh.2018.00015.
|
[15] |
LI X, MA Y T, XIE X,et al. Association of Egr3 genetic polymorphisms and coronary artery disease in the Uygur and Han of China[J]. Lipids Health Dis, 2014, 13:84. DOI: 10.1186/1476-511X-13-84.
|
[16] |
RIDKER P M, RANE M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease[J]. Circ Res, 2021, 128(11):1728-1746. DOI: 10.1161/circresaha.121.319077.
|
[17] |
LIBBY P. Targeting inflammatory pathways in cardiovascular disease:the inflammasome,interleukin-1,interleukin-6 and beyond[J]. Cells, 2021, 10(4):951. DOI: 10.3390/cells10040951.
|
[18] |
HELD C, WHITE H D, STEWART R A H,et al. Inflammatory biomarkers interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease:experiences from the STABILITY (stabilization of atherosclerotic plaque by initiation of darapladib therapy) trial[J]. J Am Heart Assoc, 2017, 6(10):e005077. DOI: 10.1161/JAHA.116.005077.
|
[19] |
FANOLA C L, MORROW D A, CANNON C P,et al. Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome:observations from the SOLID-TIMI 52 (stabilization of plaque using darapladib-thrombolysis in myocardial infarction 52) trial[J]. J Am Heart Assoc, 2017, 6(10):e005637. DOI: 10.1161/JAHA.117.005637.
|
[20] |
WANG X, GUO Z, DING Z,et al. Inflammation,autophagy,and apoptosis after myocardial infarction[J]. J Am Heart Assoc, 2018, 7(9):e008024. DOI: 10.1161/jaha.117.008024.
|
[21] |
SU J H, LUO M Y, LIANG N,et al. Interleukin-6:a novel target for cardio-cerebrovascular diseases[J]. Front Pharmacol, 2021, 12:745061. DOI: 10.3389/fphar.2021.745061.
|
[22] |
MORITA K, OKAMURA T, INOUE M,et al. Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production[J]. Proc Natl Acad Sci U S A, 2016, 113(50):E8131-8140. DOI: 10.1073/pnas.1611286114.
|
[23] |
LI S L, MIAO T Z, SEBASTIAN M,et al. The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells[J]. Immunity, 2012, 37(4):685-696. DOI: 10.1016/j.immuni.2012.08.001.
|
[24] |
OMODHO B, MIAO T Z, SYMONDS A L J,et al. Transcription factors early growth response gene (Egr) 2 and 3 control inflammatory responses of tolerant T cells[J]. Immun Inflamm Dis, 2018, 6(2):221-233. DOI: 10.1002/iid3.210.
|
[25] |
CHIEN M H, LEE W J, YANG Y C,et al. KSRP suppresses cell invasion and metastasis through miR-23a-mediated EGR3 mRNA degradation in non-small cell lung cancer[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(10):1013-1024. DOI: 10.1016/j.bbagrm.2017.08.005.
|
[26] |
BARON V T, PIO R, JIA Z,et al. Early Growth Response 3 regulates genes of inflammation and directly activates IL6 and IL8 expression in prostate cancer[J]. Br J Cancer, 2015, 112(4):755-764. DOI: 10.1038/bjc.2014.622.
|
[27] |
|
[28] |
WIELAND G D, NEHMANN N, MÜLLER D,et al. Early growth response proteins EGR-4 and EGR-3 interact with immune inflammatory mediators NF-kappaB p50 and p65[J]. J Cell Sci, 2005, 118(Pt 14):3203-3212. DOI: 10.1242/jcs.02445.
|