[1] |
PEREIRA D, RAMOS E, BRANCO J. Osteoarthritis[J]. Acta Med Port, 2015, 28(1):99-106. DOI: 10.20344/amp.5477.
|
[2] |
KATZ J N, ARANT K R, LOESER R F. Diagnosis and treatment of hip and knee osteoarthritis:a review[J]. JAMA, 2021, 325(6):568-578. DOI: 10.1001/jama.2020.22171.
|
[3] |
郭昊,闫静茹,廉洪宇,等. 人工智能应用于骨科领域相关研究的可视化分析[J]. 中国医药导报,2022,19(24):16-21.
|
[4] |
张瑗,顾文华. 人工智能辅助膝关节外科:现状与前景[J]. 创伤外科杂志,2020,22(2):81-86.
|
[5] |
张文涛,杨明,孙天泽,等. 人工智能在脊柱外科的应用进展[J]. 中国脊柱脊髓杂志,2022,32(2):174-179.
|
[6] |
李晓理,张博,王康,等. 人工智能的发展及应用[J]. 北京工业大学学报,2020,46(6):583-590.
|
[7] |
VAN C B, WYNANTS L. Machine learning in medicine[J]. N Engl J Med, 2019, 380(26):2588. DOI: 10.1056/NEJMc1906060.
|
[8] |
CAMACHO D M, COLLINS K M, POWERS R K,et al. Next-generation machine learning for biological networks[J]. Cell, 2018, 173(7):1581-1592. DOI: 10.1016/j.cell.2018.05.015.
|
[9] |
刘蓬然,陆林,霍彤彤,等. 人工智能技术在骨科领域中的应用进展[J]. 中华骨科杂志,2020,40(24):1699-1704.
|
[10] |
卢光明,张志强. 人工智能医学影像[J]. 医学研究生学报,2018,31(7):683-687.
|
[11] |
BREJNEBØL M W, HANSEN P, NYBING J U,et al. External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification[J]. Eur J Radiol, 2022, 150:110249. DOI: 10.1016/j.ejrad.2022.110249.
|
[12] |
PONGSAKONPRUTTIKUL N,ANGTHONG C,KITTICHAI V,et al. Artificial intelligence assistance in radiographic detection and classification of knee osteoarthritis and its severity:a cross-sectional diagnostic study[J]. Eur Rev Med Pharmacol Sci,2022,26(5):1549-1558.
|
[13] |
XUE Y,ZHANG R,DENG Y,et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis[J]. PLoS One,2017,12(6):e0178992.
|
[14] |
REED M,RAMPONO B,TURNER W,et al. A multicentre validation study of a smartphone application to screen hand arthritis[J]. BMC Musculoskelet Disord,2022,23(1):433.
|
[15] |
ASHINSKY B G, COLETTA C E, BOUHRARA M,et al. Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging[J]. Osteoarthritis Cartilage, 2015, 23(10):1704-1712. DOI: 10.1016/j.joca.2015.05.028.
|
[16] |
MENASHE L,HIRKO K,LOSINA E,et al. The diagnostic performance of MRI in osteoarthritis:a systematic review and meta-analysis[J]. Osteoarthritis Cartilage,2012,20(1):13-21.
|
[17] |
LIU F, ZHOU Z, SAMSONOV A,et al. Deep learning approach for evaluating knee MR images:achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018, 289(1):160-169. DOI: 10.1148/radiol.2018172986.
|
[18] |
PEDOIA V, NORMAN B, MEHANY S N,et al. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects[J]. J Magn Reson Imaging, 2019, 49(2):400-410. DOI: 10.1002/jmri.26246.
|
[19] |
KLONTZAS M E, VASSALOU E E, KAKKOS G A,et al. Differentiation between subchondral insufficiency fractures and advanced osteoarthritis of the knee using transfer learning and an ensemble of convolutional neural networks[J]. Injury, 2022, 53(6):2035-2040. DOI: 10.1016/j.injury.2022.03.008.
|
[20] |
TIBREWALA R, OZHINSKY E, SHAH R,et al. Computer-aided detection ai reduces interreader variability in grading hip abnormalities with MRI[J]. J Magn Reson Imaging, 2020, 52(4):1163-1172. DOI: 10.1002/jmri.27164.
|
[21] |
BIEN N,RAJPURKAR P,BALL R L,et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging:development and retrospective validation of MRNet[J]. PLoS Med,2018,15(11):e1002699.
|
[22] |
刘军,韩燕鸿,潘建科,等. 人工智能在中医骨伤科领域应用的现状与前景[J]. 中华中医药杂志,2019,34(8):3608-3612.
|
[23] |
邓凯烽,宁恒,陆惠玲,等. 基于现代数据挖掘技术分析中医外治法治疗膝骨关节炎的用药规律[J]. 中国中医基础医学杂志,2021,27(5):796-801.
|
[24] |
古来撒尔·艾克拜尔,卢旭昇,刘俊昌,等. 基于数据挖掘的推拿治疗膝骨关节炎手法及选穴规律分析[J]. 中国中医药信息杂志,2022,29(5):23-29.
|
[25] |
BUZA J A,GOOD C R,LEHMAN R A,et al. Robotic-assisted cortical bone trajectory(CBT) screws using the Mazor X Stealth Edition(MXSE) system:workflow and technical tips for safe and efficient use[J]. J Robot Surg,2021,15(1):13-23.
|
[26] |
吴东,刘星宇,张逸凌,等. 人工智能辅助全髋关节置换术三维规划系统的研发及临床应用研究[J]. 中国修复重建外科杂志,2020,34(9):1077-1084.
|
[27] |
ANDO W,TAKAO M,HAMADA H,et al. Comparison of the accuracy of the cup position and orientation in total hip arthroplasty for osteoarthritis secondary to developmental dysplasia of the hip between the Mako robotic arm-assisted system and computed tomography-based navigation[J]. Int Orthop,2021,45(7):1719-1725.
|
[28] |
KAMARA E, ROBINSON J, BAS M A,et al. Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty:is acetabular positioning improved in the learning curve?[J]. J Arthroplasty, 2017, 32(1):125-130. DOI: 10.1016/j.arth.2016.06.039.
|
[29] |
SEIDENSTEIN A, BIRMINGHAM M, FORAN J,et al. Better accuracy and reproducibility of a new robotically-assisted system for total knee arthroplasty compared to conventional instrumentation:a cadaveric study[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(3):859-866. DOI: 10.1007/s00167-020-06038-w.
|
[30] |
SICAT C S, CHOW J C, KAPER B,et al. Component placement accuracy in two generations of handheld robotics-assisted knee arthroplasty[J]. Arch Orthop Trauma Surg, 2021, 141(12):2059-2067. DOI: 10.1007/s00402-021-04040-6.
|
[31] |
|
[32] |
|
[33] |
吴迪,司丽娜,武丽珠,等. 3D打印截骨导板在重度膝骨性关节炎患者多半径假体全膝关节置换术中的应用效果[J]. 实用医学杂志,2022,38(2):190-195.
|
[34] |
APRATO A, GIACHINO M, BEDINO P,et al. Management of Paprosky type three B acetabular defects by custom-made components:early results[J]. Int Orthop, 2019, 43(1):117-122. DOI: 10.1007/s00264-018-4203-5.
|
[35] |
GUAN B,LIU F,HAJ-MIRZAIAN A,et al. Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-month follow-up period[J]. Osteoarthritis Cartilage,2020,28(4):428-437.
|
[36] |
LEUNG K,ZHANG B,TAN J,et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs:data from the osteoarthritis initiative[J]. Radiology,2020,296(3):584-593.
|
[37] |
BINI S A,SHAH R F,BENDICH I,et al. Machine learning algorithms can use wearable sensor data to accurately predict six-week patient-reported outcome scores following joint replacement in a prospective trial[J]. J Arthroplasty,2019,34(10):2242-2247.
|
[38] |
RAMKUMAR P N, KARNUTA J M, NAVARRO S M,et al. Preoperative prediction of value metrics and a patient-specific payment model for primary total hip arthroplasty:development and validation of a deep learning model[J]. J Arthroplasty, 2019, 34(10):2228-2234.e1. DOI: 10.1016/j.arth.2019.04.055.
|
[39] |
陈潮锋,石宇雄,梁锦成,等. 基于机器学习算法预测全膝关节置换后住院时长[J]. 中国组织工程研究,2021,25(27):4300-4306.
|
[40] |
GIANOLA S, STUCOTIVZ E, CASTELLINI G,et al. Effects of early virtual reality-based rehabilitation in patients with total knee arthroplasty:a randomized controlled trial[J]. Medicine(Baltimore), 2020, 99(7):e19136. DOI: 10.1097/MD.0000000000019136.
|
[41] |
RAMKUMAR P N, HAEBERLE H S, RAMANATHAN D,et al. Remote patient monitoring using mobile health for total knee arthroplasty:validation of a wearable and machine learning-based surveillance platform[J]. J Arthroplasty, 2019, 34(10):2253-2259. DOI: 10.1016/j.arth.2019.05.021.
|
[42] |
PRVU B J,GREEN C L,HOLMES D N,et al. Effects of virtual exercise rehabilitation in-home therapy compared with traditional care after total knee arthroplasty:VERITAS,a randomized controlled trial[J]. J Bone Joint Surg Am,2020,102(2):101-109.
|
[43] |
CORREIA F D, NOGUEIRA A, MAGALHÃES I,et al. Medium-term outcomes of digital versus conventional home-based rehabilitation after total knee arthroplasty:prospective,parallel-group feasibility study[J]. JMIR Rehabil Assist Technol, 2019, 6(1):e13111. DOI: 10.2196/13111.
|
[44] |
项林奕,朱津博,葛依婷,等. 人工智能技术在脊柱侧凸诊疗中的应用进展[J]. 中华骨科杂志,2022,42(6):388-394.
|
[45] |
PAN Y H. Heading toward artificial intelligence 2.0[J]. Engineering,2016,2(4):409-413.
|