中国全科医学 ›› 2023, Vol. 26 ›› Issue (19): 2428-2433.DOI: 10.12114/j.issn.1007-9572.2023.0019

所属专题: 骨健康最新文章合集 数智医疗最新文章合集

• 数智医疗与信息化研究 • 上一篇    下一篇

人工智能在骨关节炎诊疗中的应用进展

郭天赐, 陈继鑫, 余伟杰, 刘爱峰*()   

  1. 300381 天津市,天津中医药大学第一附属医院骨伤科 国家中医针灸临床医学研究中心
  • 收稿日期:2023-01-11 修回日期:2023-03-12 出版日期:2023-07-05 发布日期:2023-03-31
  • 通讯作者: 刘爱峰

  • 作者贡献:刘爱峰负责文章的构思与设计,并对文章整体负责,监督管理;郭天赐进行文献检索、筛选并撰写论文;陈继鑫、余伟杰负责论文修订及审校。
  • 基金资助:
    国家自然科学基金面上项目(81873316); 中国医学科学院中央级公益性科研院所基本科研业务费专项资金资助项目(2022-JKCS-07)

Recent Developments in the Application of Artificial Intelligence in the Diagnosis and Treatment of Osteoarthritis

GUO Tianci, CHEN Jixin, YU Weijie, LIU Aifeng*()   

  1. National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion/Department of Traumatology & Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
  • Received:2023-01-11 Revised:2023-03-12 Published:2023-07-05 Online:2023-03-31
  • Contact: LIU Aifeng

摘要: 骨关节炎(OA)是临床常见的退行性疾病,晚期可导致关节功能丧失,具有致残率高的特点,目前尚无有效的根治方法。因此,早期诊断和精准治疗是改善治疗效果的关键。人工智能(AI)属于多学科交叉融合的研究热点,近年来已逐渐应用到OA诊疗过程中,能够提高OA的诊断准确性、改善临床治疗和预后效果。本文通过归纳相关文献,对AI在OA诊疗中的应用现状进行系统阐述,发现其在辅助OA影像诊断、手术治疗、疾病进展预测和术后康复等方面具有潜在的应用价值,但也存在数据采集不规范、算法系统不稳定等局限,今后应建立标准化的临床样本数据库,持续优化算法模型,使AI技术更好地参与OA诊疗。

关键词: 人工智能, 骨关节炎, 机器学习, 深度学习, 手术机器人, 智能康复, 综述

Abstract:

Osteoarthritis (OA) is a degenerative disease frequently encountered clinically, which can lead to loss of joint function in the late stage and is associated with a high disability rate. There is still no available cure for OA. Therefore, early diagnosis and precise treatment are the key to improving the therapeutic effect. Being an interdisciplinary research focus, artificial intelligence (AI) has been increasingly used in the diagnosis and treatment of OA recently, as it improves the diagnostic accuracy as well as clinical treatment and prognosis of OA. We summarized and systematically reviewed the literature on the application of AI in the diagnosis and treatment of OA, in which the application potential in assisting imaging diagnosis, surgical treatment, progression prediction and postoperative rehabilitation of OA was indicated, yet some limitations including non-standardized data collection and unstable algorithmic system were also identified. In the future, it is expected to establish a standardized clinical sample database and continuously optimize the algorithmic model, so as to better incorporate AI technologies in the diagnosis and treatment process of OA.

Key words: Artificial intelligence, Osteoarthritis, Machine learning, Deep learning, Surgical robot, Intelligent rehabilitation, Review