[1] |
CASSON R J, CHIDLOW G, CROWSTON J G,et al. Retinal energy metabolism in health and glaucoma[J]. Prog Retin Eye Res, 2021, 81:100881. DOI: 10.1016/j.preteyeres.2020.100881.
|
[2] |
WANG X W, LOU N H, EBERHARDT A,et al. An ocular glymphatic clearance system removes β-amyloid from the rodent eye[J]. Sci Transl Med, 2020, 12(536):eaaw3210. DOI: 10.1126/scitranslmed.aaw3210.
|
[3] |
Archiv für pathologische anatomie und physiologie und für klinische medicin[J]. Br Foreign Med Chir Rev,1861,27(53):52-65.
|
[4] |
ILIFF J J, WANG M H, LIAO Y H,et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes,including amyloid Β[J]. Sci Transl Med, 2012, 4(147):147ra111. DOI: 10.1126/scitranslmed.3003748.
|
[5] |
LOUVEAU A, SMIRNOV I, KEYES T J,et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560):337-341. DOI: 10.1038/nature14432.
|
[6] |
RASMUSSEN M K, MESTRE H, NEDERGAARD M. Fluid transport in the brain[J]. Physiol Rev, 2022, 102(2):1025-1151. DOI: 10.1152/physrev.00031.2020.
|
[7] |
PLOG B A, NEDERGAARD M. The glymphatic system in central nervous system health and disease:past,present,and future[J]. Annu Rev Pathol Mech Dis, 2018, 13:379-394. DOI: 10.1146/annurev-pathol-051217-111018.
|
[8] |
HABLITZ L M, PLÁ V, GIANNETTO M,et al. Circadian control of brain glymphatic and lymphatic fluid flow[J]. Nat Commun, 2020, 11(1):4411. DOI: 10.1038/s41467-020-18115-2.
|
[9] |
NEDERGAARD M, GOLDMAN S A. Glymphatic failure as a final common pathway to dementia[J]. Science, 2020, 370(6512):50-56. DOI: 10.1126/science.abb8739.
|
[10] |
TOH C H, SIOW T Y. Glymphatic dysfunction in patients with ischemic stroke[J]. Front Aging Neurosci, 2021, 13:756249. DOI: 10.3389/fnagi.2021.756249.
|
[11] |
SULLAN M J, ASKEN B M, JAFFEE M S,et al. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy[J]. Neurosci Biobehav Rev, 2018, 84:316-324. DOI: 10.1016/j.neubiorev.2017.08.016.
|
[12] |
BAE Y J, CHOI B S, KIM J M,et al. Altered glymphatic system in idiopathic normal pressure hydrocephalus[J]. Parkinsonism Relat Disord, 2021, 82:56-60. DOI: 10.1016/j.parkreldis.2020.11.009.
|
[13] |
DENNISTON A K, KEANE P A. Paravascular pathways in the eye:is there an'ocular glymphatic system'?[J]. Invest Ophthalmol Vis Sci, 2015, 56(6):3955-3956. DOI: 10.1167/iovs.15-17243.
|
[14] |
WOSTYN P, DE GROOT V, VAN DAM D,et al. The glymphatic system:a new player in ocular diseases?[J]. Invest Ophthalmol Vis Sci, 2016, 57(13):5426-5427. DOI: 10.1167/iovs.16-20262.
|
[15] |
TAM A L C, GUPTA N, ZHANG Z X,et al. Quantum dots trace lymphatic drainage from the mouse eye[J]. Nanotechnology, 2011, 22(42):425101. DOI: 10.1088/0957-4484/22/42/425101.
|
[16] |
MATHIEU E, GUPTA N, MACDONALD R L,et al. In vivo imaging of lymphatic drainage of cerebrospinal fluid in mouse[J]. Fluids Barriers CNS, 2013, 10(1):35. DOI: 10.1186/2045-8118-10-35.
|
[17] |
WOSTYN P, KILLER H E, DE DEYN P P. Glymphatic stasis at the site of the lamina cribrosa as a potential mechanism underlying open-angle glaucoma[J]. Clin Exp Ophthalmol, 2017, 45(5):539-547. DOI: 10.1111/ceo.12915.
|
[18] |
MATHIEU E, GUPTA N, AHARI A,et al. Evidence for cerebrospinal fluid entry into the optic nerve via a glymphatic pathway[J]. Invest Ophthalmol Vis Sci, 2017, 58(11):4784-4791. DOI: 10.1167/iovs.17-22290.
|
[19] |
JACOBSEN H H, RINGSTAD G, JØRSTAD Ø K,et al. The human visual pathway communicates directly with the subarachnoid space[J]. Invest Ophthalmol Vis Sci, 2019, 60(7):2773-2780. DOI: 10.1167/iovs.19-26997.
|
[20] |
WOSTYN P, DE GROOT V, VAN DAM D,et al. The first histologic evidence of a paravascular pathway within the optic nerve[J]. Invest Ophthalmol Vis Sci, 2018, 59(5):1717. DOI: 10.1167/iovs.17-23119.
|
[21] |
UDDIN N, RUTAR M. Ocular lymphatic and glymphatic systems:implications for retinal health and disease[J]. Int J Mol Sci, 2022, 23(17):10139. DOI: 10.3390/ijms231710139.
|
[22] |
MOGENSEN F L H, DELLE C, NEDERGAARD M. The glymphatic system(En)during inflammation[J]. Int J Mol Sci, 2021, 22(14):7491. DOI: 10.3390/ijms22147491.
|
[23] |
WANG R, SEIFERT P, JAKOBS T C. Astrocytes in the optic nerve head of glaucomatous mice display a characteristic reactive phenotype[J]. Invest Ophthalmol Vis Sci, 2017, 58(2):924-932. DOI: 10.1167/iovs.16-20571.
|
[24] |
SIMONS E S, SMITH M A, DENGLER-CRISH C M,et al. Retinal ganglion cell loss and gliosis in the retinofugal projection following intravitreal exposure to amyloid-beta[J]. Neurobiol Dis, 2021, 147:105146. DOI: 10.1016/j.nbd.2020.105146.
|
[25] |
NIZARI S, GUO L, DAVIS B M,et al. Non-amyloidogenic effects of α2 adrenergic agonists:implications for brimonidine-mediated neuroprotection[J]. Cell Death Dis, 2016, 7(12):e2514. DOI: 10.1038/cddis.2016.397.
|
[26] |
XIN S H, TAN L, CAO X P,et al. Clearance of amyloid beta and tau in alzheimer's disease:from mechanisms to therapy[J]. Neurotox Res, 2018, 34(3):733-748. DOI: 10.1007/s12640-018-9895-1.
|
[27] |
MATHIEU E, GUPTA N, PACZKA-GIORGI L A,et al. Reduced cerebrospinal fluid inflow to the optic nerve in Glaucoma[J]. Invest Ophthalmol Vis Sci, 2018, 59(15):5876-5884. DOI: 10.1167/iovs.18-24521.
|
[28] |
RANGROO THRANE V, HYNNEKLEIV L, WANG X W,et al. Twists and turns of ocular glymphatic clearance-new study reveals surprising findings in glaucoma[J]. Acta Ophthalmol, 2021, 99(2):e283-284. DOI: 10.1111/aos.14524.
|
[29] |
BANEKE A J, AUBRY J, VISWANATHAN A C,et al. The role of intracranial pressure in glaucoma and therapeutic implications[J]. Eye(Lond), 2020, 34(1):178-191. DOI: 10.1038/s41433-019-0681-y.
|
[30] |
LIU H R, YANG D Y, MA T,et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle Glaucoma[J]. Am J Ophthalmol, 2018, 186:128-137. DOI: 10.1016/j.ajo.2017.11.024.
|
[31] |
MAO Y Y, YANG D Y, LI J,et al. Finite element analysis of trans-lamina cribrosa pressure difference on optic nerve head biomechanics:the Beijing Intracranial and Intraocular Pressure Study[J]. Sci China Life Sci, 2020, 63(12):1887-1894. DOI: 10.1007/s11427-018-1585-8.
|
[32] |
VILLARRUEL J M, LI X Q, BACH-HOLM D,et al. Anterior Lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma[J]. Eur J Ophthalmol, 2017, 27(1):55-61. DOI: 10.5301/ejo.5000806.
|
[33] |
KIM J A, KIM T W, LEE E J,et al. Comparison of lamina cribrosa morphology in eyes with ocular hypertension and normal-tension Glaucoma[J]. Invest Ophthalmol Vis Sci, 2020, 61(4):4. DOI: 10.1167/iovs.61.4.4.
|
[34] |
WOSTYN P, GIBSON C R, MADER T H. The odyssey of the ocular and cerebrospinal fluids during a mission to Mars:the ocular glymphatic system under pressure[J]. Eye(Lond), 2022, 36(4):686-691. DOI: 10.1038/s41433-021-01721-9.
|
[35] |
LEE A G, MADER T H, GIBSON C R,et al. Space flight-associated neuro-ocular syndrome(SANS)[J]. Eye(Lond), 2018, 32(7):1164-1167. DOI: 10.1038/s41433-018-0070-y.
|
[36] |
WOSTYN P, DE WINNE F, STERN C,et al. Potential involvement of the ocular glymphatic system in optic disc edema in astronauts[J]. Aerosp Med Hum Perform, 2020, 91(12):975-977. DOI: 10.3357/AMHP.5670.2020.
|
[37] |
WOSTYN P, DE WINNE F, STERN C,et al. Dilated prelaminar paravascular spaces as a possible mechanism for optic disc edema in astronauts[J]. Aerosp Med Hum Perform, 2018, 89(12):1089-1091. DOI: 10.3357/AMHP.5095.2018.
|
[38] |
LAWLEY J S, PETERSEN L G, HOWDEN E J,et al. Effect of gravity and microgravity on intracranial pressure[J]. J Physiol, 2017, 595(6):2115-2127. DOI: 10.1113/JP273557.
|
[39] |
MACIAS B R, PATEL N B, GIBSON C R,et al. Association of long-duration spaceflight with anterior and posterior ocular structure changes in astronauts and their recovery[J]. JAMA Ophthalmol, 2020, 138(5):553-559. DOI: 10.1001/jamaophthalmol.2020.0673.
|
[40] |
BARISANO G, SEPEHRBAND F, COLLINS H R,et al. The effect of prolonged spaceflight on cerebrospinal fluid and perivascular spaces of astronauts and cosmonauts[J]. Proc Natl Acad Sci U S A, 2022, 119(17):e2120439119. DOI: 10.1073/pnas.2120439119.
|
[41] |
HUPFELD K E, RICHMOND S B, MCGREGOR H R,et al. Longitudinal MRI-visible perivascular space(PVS)changes with long-duration spaceflight[J]. Sci Rep, 2022, 12(1):7238. DOI: 10.1038/s41598-022-11593-y.
|
[42] |
KUMARIA A, GRUENER A M, DOW G R,et al. An explanation for Terson syndrome at last:the glymphatic reflux theory[J]. J Neurol, 2022, 269(3):1264-1271. DOI: 10.1007/s00415-021-10686-4.
|
[43] |
KUMARIA A, GRUENER A M, LENTHALL R K,et al. Terson syndrome in reverse:intraventricular haemorrhage following primary intraocular haemorrhage[J]. Neurol Sci, 2022, 43(7):4551-4553. DOI: 10.1007/s10072-022-06053-4.
|
[44] |
GAUNTT C D, SHERRY R G, KANNAN C. Terson syndrome with bilateral optic nerve sheath hemorrhage[J]. J Neuroophthalmol, 2007, 27(3):193-194. DOI: 10.1097/WNO.0b013e31814b22dc.
|
[45] |
|
[46] |
SAKAMOTO M, NAKAMURA K, SHIBATA M,et al. Magnetic resonance imaging findings of Terson's syndrome suggesting a possible vitreous hemorrhage mechanism[J]. Jpn J Ophthalmol, 2010, 54(2):135-139. DOI: 10.1007/s10384-009-0783-3.
|
[47] |
IULIANO L, FOGLIATO G, CODENOTTI M. Intrasurgical imaging of subinternal limiting membrane blood diffusion in terson syndrome[J]. Case Rep Ophthalmol Med, 2014, 2014:689793. DOI: 10.1155/2014/689793.
|
[48] |
KUMARIA A, GRUENER A M, LENTHALL R K,et al. Terson syndrome in reverse:intraventricular haemorrhage following primary intraocular haemorrhage[J]. Neurol Sci, 2022, 43(7):4551-4553. DOI: 10.1007/s10072-022-06053-4.
|
[49] |
|
[50] |
|
[51] |
ASHOK A, SINGH N, CHAUDHARY S,et al. Retinal degeneration and alzheimer's disease:an evolving link[J]. Int J Mol Sci, 2020, 21(19):7290. DOI: 10.3390/ijms21197290.
|
[52] |
KRESS B T, ILIFF J J, XIA M S,et al. Impairment of paravascular clearance pathways in the aging brain[J]. Ann Neurol, 2014, 76(6):845-861. DOI: 10.1002/ana.24271.
|