[1] |
|
[2] |
CHEELEY M K, SASEEN J J, AGARWALA A,et al. NLA scientific statement on statin intolerance:a new definition and key considerations for ASCVD risk reduction in the statin intolerant patient[J]. J Clin Lipidol, 2022, 16(4):361-375. DOI: 10.1016/j.jacl.2022.05.068.
|
[3] |
LEWIS D R, KAMISOGLU K, YORK A W,et al. Polymer-based therapeutics:nanoassemblies and nanoparticles for management of atherosclerosis[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2011, 3(4):400-420. DOI: 10.1002/wnan.145.
|
[4] |
YE M, ZHOU J, ZHONG Y X,et al. SR-A-targeted phase-transition nanoparticles for the detection and treatment of atherosclerotic vulnerable plaques[J]. ACS Appl Mater Interfaces, 2019, 11(10):9702-9715. DOI: 10.1021/acsami.8b18190.
|
[5] |
KHERADMANDI M, ACKERS I, BURDICK M M,et al. Targeting dysfunctional vascular endothelial cells using immunoliposomes under flow conditions[J]. Cell Mol Bioeng, 2020, 13(3):189-199. DOI: 10.1007/s12195-020-00616-1.
|
[6] |
GAO C, HUANG Q X, LIU C H,et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines[J]. Nat Commun, 2020, 11(1):2622. DOI: 10.1038/s41467-020-16439-7.
|
[7] |
ZHANG L, TIAN X Y, CHAN C K W,et al. Promoting the delivery of nanoparticles to atherosclerotic plaques by DNA coating[J]. ACS Appl Mater Interfaces, 2019, 11(15):13888-13904. DOI: 10.1021/acsami.8b17928.
|
[8] |
WANG Y, ZHANG K, QIN X,et al. Biomimetic nanotherapies:red blood cell based core-shell structured nano complexes for atherosclerosis management[J]. Adv Sci (Weinh), 2019, 6(12):1900172. DOI: 10.1002/advs.201900172.
|
[9] |
PATEL D K, RANA D, ASWAL V K,et al. Influence of graphene on self-assembly of polyurethane and evaluation of its biomedical properties[J]. Polymer, 2015, 65:183-192. DOI: 10.1016/j.polymer.2015.03.076.
|
[10] |
NANDWANA V, RYOO S-R, KANTHALA S,et al. High-density lipoprotein-like magnetic nanostructures (HDL-MNS):theranostic agents for cardiovascular disease [J]. Chemistry of Materials, 2017, 29(5):2276-2282. DOI: 10.1021/acs.chemmater.6b05357.
|
[11] |
OUMZIL K, RAMIN M A, LORENZATO C,et al. Solid lipid nanoparticles for image-guided therapy of atherosclerosis[J]. Bioconjug Chem, 2016, 27(3):569-575. DOI: 10.1021/acs.bioconjchem.5b00590.
|
[12] |
KORCHINSKI D J, TAHA M, YANG R Z,et al. Iron oxide as an MRI contrast agent for cell tracking[J]. Magn Reson Insights, 2015, 8(Suppl 1):15-29. DOI: 10.4137/MRI.S23557.
|
[13] |
LU K Y, LIN P Y, CHUANG E Y,et al. H 2O 2-depleting and O 2-generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages[J]. ACS Appl Mater Interfaces, 2017, 9(6):5158-5172. DOI: 10.1021/acsami.6b15515.
|
[14] |
KOSUGE H, SHERLOCK S P, KITAGAWA T,et al. Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes[J]. J Am Heart Assoc, 2012, 1(6):e002568. DOI: 10.1161/JAHA.112.002568.
|
[15] |
CHHOUR P, NAHA P C, O'NEILL S M,et al. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography[J]. Biomaterials, 2016, 87:93-103. DOI: 10.1016/j.biomaterials.2016.02.009.
|
[16] |
QIN J B, PENG Z Y, LI B,et al. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages[J]. Nanoscale, 2015, 7(33):13991-14001. DOI: 10.1039/c5nr02521d.
|
[17] |
SUK J S, XU Q G, KIM N,et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery[J]. Adv Drug Deliv Rev, 2016, 99(Pt A):28-51. DOI: 10.1016/j.addr.2015.09.012.
|
[18] |
LIANG X Y, LI H Y, ZHANG A A,et al. Red blood cell biomimetic nanoparticle with anti-inflammatory,anti-oxidative and hypolipidemia effect ameliorated atherosclerosis therapy[J]. Nanomed-Nanotechnol Biol Med, 2022, 41:102519. DOI: 10.1016/j.nano.2022.102519.
|
[19] |
MEHTA S, BONGCARON V, NGUYEN T K,et al. An ultrasound-responsive theranostic cyclodextrin-loaded nanoparticle for multimodal imaging and therapy for atherosclerosis[J]. Small, 2022, 18(31):e2200967. DOI: 10.1002/smll.202200967.
|
[20] |
FANG F, NI Y H, YU H C,et al. Inflammatory endothelium-targeted and cathepsin responsive nanoparticles are effective against atherosclerosis[J]. Theranostics, 2022, 12(9):4200-4220. DOI: 10.7150/thno.70896.
|
[21] |
GAO C, LIU C H, CHEN Q,et al. Cyclodextrin-mediated conjugation of macrophage and liposomes for treatment of atherosclerosis[J]. J Control Release, 2022, 349:2-15. DOI: 10.1016/j.jconrel.2022.06.053.
|
[22] |
PHAM L M, KIM E C, OU W Q,et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis[J]. Biomaterials, 2021, 269:120677. DOI: 10.1016/j.biomaterials.2021.120677.
|
[23] |
WANG Y, ZHANG K, LI T H,et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications[J]. Theranostics, 2021, 11(1):164-180. DOI: 10.7150/thno.47841.
|
[24] |
DHANASEKARA C S, ZHANG J, NIE S F,et al. Nanoparticles target intimal macrophages in atherosclerotic lesions[J]. Nanomed-Nanotechnol Biol Med, 2021, 32:102346. DOI: 10.1016/j.nano.2020.102346.
|
[25] |
HOU X Y, LIN H, ZHOU X D,et al. Novel dual ROS-sensitive and CD44 receptor targeting nanomicelles based on oligomeric hyaluronic acid for the efficient therapy of atherosclerosis[J]. Carbohydr Polym, 2020, 232:115787. DOI: 10.1016/j.carbpol.2019.115787.
|
[26] |
KIM H, KUMAR S, KANG D W,et al. Affinity-driven design of cargo-switching nanoparticles to leverage a cholesterol-rich microenvironment for atherosclerosis therapy[J]. ACS Nano, 2020, 14(6):6519-6531. DOI: 10.1021/acsnano.9b08216.
|
[27] |
BOADA C, ZINGER A, TSAO C,et al. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation[J]. Circ Res, 2020, 126(1):25-37. DOI: 10.1161/CIRCRESAHA.119.315185.
|
[28] |
BELDMAN T J, MALINOVA T S, DESCLOS E,et al. Nanoparticle-aided characterization of arterial endothelial architecture during atherosclerosis progression and metabolic therapy[J]. ACS Nano, 2019, 13(12):13759-13774. DOI: 10.1021/acsnano.8b08875.
|
[29] |
KIM M, SAHU A, HWANG Y,et al. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E -/- mice[J]. Biomaterials, 2020, 226:119550. DOI: 10.1016/j.biomaterials.2019.119550.
|
[30] |
WANG Y Q, LI L L, ZHAO W B,et al. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity[J]. ACS Nano, 2018, 12(9):8943-8960. DOI: 10.1021/acsnano.8b02037.
|
[31] |
CHMIELOWSKI R A, ABDELHAMID D S, FAIG J J,et al. Athero-inflammatory nanotherapeutics:ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation[J]. Acta Biomater, 2017, 57:85-94. DOI: 10.1016/j.actbio.2017.05.029.
|
[32] |
SONG Y N, HUANG Z Y, LIU X,et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE -/-) mice[J]. Nanomed-Nanotechnol Biol Med, 2019, 15(1):13-24. DOI: 10.1016/j.nano.2018.08.002.
|
[33] |
FAVARI E, THOMAS M J, SORCI-THOMAS M G. High-density lipoprotein functionality as a new pharmacological target on cardiovascular disease:unifying mechanism that explains high-density lipoprotein protection toward the progression of atherosclerosis[J]. J Cardiovasc Pharmacol, 2018, 71(6):325-331. DOI: 10.1097/FJC.0000000000000573.
|
[34] |
MANSUKHANI N A, PETERS E B, SO M M,et al. Peptide amphiphile supramolecular nanostructures as a targeted therapy for atherosclerosis[J]. Macromol Biosci, 2019, 19(6):e1900066. DOI: 10.1002/mabi.201900066.
|
[35] |
CHIN D D, POON C, TRAC N,et al. Collagenase-cleavable peptide amphiphile micelles as a novel theranostic strategy in atherosclerosis[J]. Adv Ther (Weinh), 2020, 3(3):1900196. DOI: 10.1002/adtp.201900196.
|
[36] |
AHERN R J, HANRAHAN J P, TOBIN J M,et al. Comparison of fenofibrate-mesoporous silica drug-loading processes for enhanced drug delivery[J]. Eur J Pharm Sci, 2013, 50(3/4):400-409. DOI: 10.1016/j.ejps.2013.08.026.
|
[37] |
HU Y C, ZHI Z Z, WANG T Y,et al. Incorporation of indomethacin nanoparticles into 3-D ordered macroporous silica for enhanced dissolution and reduced gastric irritancy[J]. Eur J Pharm Biopharm, 2011, 79(3):544-551. DOI: 10.1016/j.ejpb.2011.07.001.
|
[38] |
MELLAERTS R, MOLS R, JAMMAER J A,et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica[J]. Eur J Pharm Biopharm, 2008, 69(1):223-230. DOI: 10.1016/j.ejpb.2007.11.006.
|
[39] |
WANG Y Z, SUN L Z, JIANG T Y,et al. The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol[J]. Drug Dev Ind Pharm, 2014, 40(6):819-828. DOI: 10.3109/03639045.2013.788013.
|
[40] |
HU Y C. 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol[J]. Microporous Mesoporous Mater, 2012, 147(1):94-101. DOI: 10.1016/j.micromeso.2011.06.001.
|
[41] |
ZHANG Y Z, ZHI Z Z, JIANG T Y,et al. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan[J]. J Control Release, 2010, 145(3):257-263. DOI: 10.1016/j.jconrel.2010.04.029.
|
[42] |
WU M L, LI X, GUO Q,et al. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques[J]. Nanomed-Nanotechnol Biol Med, 2021, 32:102330. DOI: 10.1016/j.nano.2020.102330.
|
[43] |
BELDMAN T J, SENDERS M L, ALAARG A,et al. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis[J]. ACS Nano, 2017, 11(6):5785-5799. DOI: 10.1021/acsnano.7b01385.
|
[44] |
LEWIS D R, PETERSEN L K, YORK A W,et al. Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo[J]. Proc Natl Acad Sci USA, 2015, 112(9):2693-2698. DOI: 10.1073/pnas.1424594112.
|
[45] |
QIE Y Q, YUAN H F, VON ROEMELING C A,et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes[J]. Sci Rep, 2016, 6:26269. DOI: 10.1038/srep26269.
|
[46] |
VOLPE C M O, VILLAR-DELFINO P H, DOS ANJOS P M F,et al. Cellular death,reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2):119. DOI: 10.1038/s41419-017-0135-z.
|
[47] |
LI J M, NEWBURGER P E, GOUNIS M J,et al. Local arterial nanoparticle delivery of siRNA for NOX2 knockdown to prevent restenosis in an atherosclerotic rat model[J]. Gene Ther, 2010, 17(10):1279-1287. DOI: 10.1038/gt.2010.69.
|
[48] |
MOORE K J, TABAS I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3):341-355. DOI: 10.1016/j.cell.2011.04.005.
|
[49] |
POON C, GALLO J, JOO J,et al. Hybrid,metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis[J]. J Nanobiotechnology, 2018, 16(1):92. DOI: 10.1186/s12951-018-0420-8.
|
[50] |
GURUNATHAN S, KANG M H, KIM J H. A comprehensive review on factors influences biogenesis,functions,therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine, 2021, 16:1281-1312. DOI: 10.2147/IJN.S291956.
|
[51] |
MA X T, WANG J J, LI J,et al. Loading miR-210 in endothelial progenitor cells derived exosomes boosts their beneficial effects on hypoxia/reoxygeneation-injured human endothelial cells via protecting mitochondrial function[J]. Cell Physiol Biochem, 2018, 46(2):664-675. DOI: 10.1159/000488635.
|
[52] |
CHEN A Q, GAO X F, WANG Z M,et al. Therapeutic exosomes in prognosis and developments of coronary artery disease[J]. Front Cardiovasc Med, 2021, 8:691548. DOI: 10.3389/fcvm.2021.691548.
|
[53] |
BANIZS A B, HUANG T, DRYDEN K,et al. In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery[J]. Int J Nanomedicine, 2014, 9:4223-4230. DOI: 10.2147/IJN.S64267.
|
[54] |
HERGENREIDER E, HEYDT S, TRÉGUER K,et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol, 2012, 14(3):249-256. DOI: 10.1038/ncb2441.
|
[55] |
WU G H, ZHANG J F, ZHAO Q R,et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment[J]. Angew Chem Int Ed Engl, 2020, 59(10):4068-4074. DOI: 10.1002/anie.201913700.
|
[56] |
MOGHIMI S M, SIMBERG D. Complement activation turnover on surfaces of nanoparticles[J]. Nano Today, 2017, 15:8-10. DOI: 10.1016/j.nantod.2017.03.001.
|
[57] |
CHEN F F, WANG G K, GRIFFIN J I,et al. Complement proteins bind to nanoparticle protein Corona and undergo dynamic exchange in vivo[J]. Nat Nanotechnol, 2017, 12(4):387-393. DOI: 10.1038/nnano.2016.269.
|
[58] |
SZEBENI J, BEDOCS P, ROZSNYAY Z,et al. Liposome-induced complement activation and related cardiopulmonary distress in pigs:factors promoting reactogenicity of Doxil and AmBisome[J]. Nanomed-Nanotechnol Biol Med, 2012, 8(2):176-184. DOI: 10.1016/j.nano.2011.06.003.
|
[59] |
WANG G K, CHEN F F, BANDA N K,et al. Activation of human complement system by dextran-coated iron oxide nanoparticles is not affected by dextran/Fe ratio,hydroxyl modifications,and crosslinking[J]. Front Immunol, 2016, 7:418. DOI: 10.3389/fimmu.2016.00418.
|
[60] |
BANDA N K, MEHTA G, CHAO Y,et al. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum[J]. Part Fibre Toxicol, 2014, 11:64. DOI: 10.1186/s12989-014-0064-2.
|
[61] |
NORDIN J Z, LEE Y, VADER P,et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties[J]. Nanomed-Nanotechnol Biol Med, 2015, 11(4):879-883. DOI: 10.1016/j.nano.2015.01.003.
|