[1] |
CUMMINGS J. Disease modification and Neuroprotection in neurodegenerative disorders[J]. Transl Neurodegener, 2017, 6:25. DOI: 10.1186/s40035-017-0096-2.
|
[2] |
HEEMELS M T. Neurodegenerative diseases[J]. Nature, 2016, 539(7628):179. DOI: 10.1038/539179a.
|
[3] |
DAWSON T M, GOLDE T E, LAGIER-TOURENNE C. Animal models of neurodegenerative diseases[J]. Nat Neurosci, 2018, 21(10):1370-1379. DOI: 10.1038/s41593-018-0236-8.
|
[4] |
BD N, R K D, SK M. Gut microbial molecules in behavioural and neurodegenerative conditions[J]. Nat Rev Neurosci, 2020, 21(12):717-731. DOI: 10.1038/s41583-020-00381-0.
|
[5] |
MILLER T L, WOLIN M J. Pathways of acetate,propionate,and butyrate formation by the human fecal microbial flora[J]. Appl Environ Microbiol, 1996, 62(5):1589-1592. DOI: 10.1128/aem.62.5.1589-1592.1996.
|
[6] |
CUMMINGS J H, POMARE E W, BRANCH W J,et al. Short chain fatty acids in human large intestine,portal,hepatic and venous blood[J]. Gut, 1987, 28(10):1221-1227. DOI: 10.1136/gut.28.10.1221.
|
[7] |
TAGLIABUE A, ELLI M. The role of gut microbiota in human obesity:recent findings and future perspectives[J]. Nutr Metab Cardiovasc Dis, 2013, 23(3):160-168. DOI: 10.1016/j.numecd.2012.09.002.
|
[8] |
DONOHOE D R, GARGE N, ZHANG X X,et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab, 2011, 13(5):517-526. DOI: 10.1016/j.cmet.2011.02.018.
|
[9] |
BRAHE L K, ASTRUP A, LARSEN L H. Is butyrate the link between diet,intestinal microbiota and obesity-related metabolic diseases?[J]. Obes Rev, 2013, 14(12):950-959. DOI: 10.1111/obr.12068.
|
[10] |
BURGER-VAN PAASSEN N, VINCENT A, PUIMAN P J,et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids:implications for epithelial protection[J]. Biochem J, 2009, 420(2):211-219. DOI: 10.1042/BJ20082222.
|
[11] |
LU J, ZHENG J, WANG B H,et al. The human microbiota in health and disease[J]. Engineering, 2017, 3(1):71-82. DOI: 10.1016/J.ENG.2017.01.008.
|
[12] |
PEREZ-PARDO P, DODIYA H B, ENGEN P A,et al. Role of TLR4 in the gut-brain axis in Parkinson's disease:a translational study from men to mice[J]. Gut, 2019, 68(5):829-843. DOI: 10.1136/gutjnl-2018-316844.
|
[13] |
UNGER M M, SPIEGEL J, DILLMANN K U,et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls[J]. Parkinsonism Relat Disord, 2016, 32:66-72. DOI: 10.1016/j.parkreldis.2016.08.019.
|
[14] |
ZHANG L, WANG Y, XIAYU X,et al. Altered gut microbiota in a mouse model of Alzheimer's disease[J]. J Alzheimers Dis, 2017, 60(4):1241-1257. DOI: 10.3233/jad-170020.
|
[15] |
ZHENG J, ZHENG S J, CAI W J,et al. Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids[J]. Anal Chim Acta, 2019, 1070:51-59. DOI: 10.1016/j.aca.2019.04.021.
|
[16] |
ZENG Q, GONG J L, LIU X Y,et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis[J]. Neurochem Int, 2019, 129:104468. DOI: 10.1016/j.neuint.2019.104468.
|
[17] |
DUGGER B N, DICKSON D W. Pathology of neurodegenerative diseases[J]. Cold Spring Harb Perspect Biol, 2017, 9(7):a028035. DOI: 10.1101/cshperspect.a028035.
|
[18] |
HUSSAIN R, ZUBAIR H, PURSELL S,et al. Neurodegenerative diseases:regenerative mechanisms and novel therapeutic approaches[J]. Brain Sci, 2018, 8(9):177. DOI: 10.3390/brainsci8090177.
|
[19] |
HO L, ONO K, TSUJI M,et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms[J]. Expert Rev Neurother, 2018, 18(1):83-90. DOI: 10.1080/14737175.2018.1400909.
|
[20] |
FERNANDO W M A D B, MARTINS I J, MORICI M,et al. Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer's disease transgenic mouse model at an early disease stage[J]. J Alzheimers Dis, 2020, 74(1):91-99. DOI: 10.3233/JAD-190120.
|
[21] |
MARIZZONI M, CATTANEO A, MIRABELLI P,et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer's disease[J]. J Alzheimers Dis, 2020, 78(2):683-697. DOI: 10.3233/JAD-200306.
|
[22] |
QIAO C M, SUN M F, JIA X B,et al. Sodium butyrate causes α-synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway[J]. Exp Cell Res, 2020, 387(1):111772. DOI: 10.1016/j.yexcr.2019.111772.
|
[23] |
HOU Y C, LI X Q, LIU C,et al. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson's disease[J]. Exp Gerontol, 2021, 150:111376. DOI: 10.1016/j.exger.2021.111376.
|
[24] |
BAGHERI F, KHORI V, ALIZADEH A M,et al. Reactive oxygen species-mediated cardiac-reperfusion injury:mechanisms and therapies[J]. Life Sci, 2016, 165:43-55. DOI: 10.1016/j.lfs.2016.09.013.
|
[25] |
ADIBHATLA R M, HATCHER J F. Lipid oxidation and peroxidation in CNS health and disease:from molecular mechanisms to therapeutic opportunities[J]. Antioxid Redox Signal, 2010, 12(1):125-169. DOI: 10.1089/ars.2009.2668.
|
[26] |
BHAT A H, DAR K B, ANEES S,et al. Oxidative stress,mitochondrial dysfunction and neurodegenerative diseases;a mechanistic insight[J]. Biomed Pharmacother, 2015, 74:101-110. DOI: 10.1016/j.biopha.2015.07.025.
|
[27] |
YAMAMOTO M, KENSLER T W, MOTOHASHI H. The KEAP1-NRF2 system:a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev, 2018, 98(3):1169-1203. DOI: 10.1152/physrev.00023.2017.
|
[28] |
MANN G E, FORMAN H J. Introduction to special issue on 'Nrf2 regulated redox signaling and metabolism in physiology and medicine[J]. Free Radic Biol Med, 2015, 88(Pt B):91-92. DOI: 10.1016/j.freeradbiomed.2015.08.002.
|
[29] |
TEBAY L E, ROBERTSON H, DURANT S T,et al. Mechanisms of activation of the transcription factor Nrf2 by redox stressors,nutrient cues,and energy status and the pathways through which it attenuates degenerative disease[J]. Free Radic Biol Med, 2015, 88(Pt B):108-146. DOI: 10.1016/j.freeradbiomed.2015.06.021.
|
[30] |
WU J D, JIANG Z P, ZHANG H N,et al. Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2[J]. Free Radic Biol Med, 2018, 124:454-465. DOI: 10.1016/j.freeradbiomed.2018.06.034.
|
[31] |
DUMITRESCU L, POPESCU-OLARU I, COZMA L,et al. Oxidative stress and the microbiota-gut-brain axis[J]. Oxid Med Cell Longev, 2018, 2018:2406594. DOI: 10.1155/2018/2406594.
|
[32] |
SZCZECHOWIAK K, DINIZ B S, LESZEK J. Diet and Alzheimer's dementia - Nutritional approach to modulate inflammation[J]. Pharmacol Biochem Behav, 2019, 184:172743. DOI: 10.1016/j.pbb.2019.172743.
|
[33] |
GENG X, YANG B, LI R T,et al. Effects of docosahexaenoic acid and its peroxidation product on amyloid-β peptide-stimulated microglia[J]. Mol Neurobiol, 2020, 57(2):1085-1098. DOI: 10.1007/s12035-019-01805-4.
|
[34] |
HOYLES L, SNELLING T, UMLAI U K,et al. Microbiome-host systems interactions:protective effects of propionate upon the blood-brain barrier[J]. Microbiome, 2018, 6(1):55. DOI: 10.1186/s40168-018-0439-y.
|
[35] |
NURRAHMA B A, TSAO S P, WU C H,et al. Probiotic supplementation facilitates recovery of 6-OHDA-induced motor deficit via improving mitochondrial function and energy metabolism[J]. Front Aging Neurosci, 2021, 13:668775. DOI: 10.3389/fnagi.2021.668775.
|
[36] |
FILIPPONE A, LANZA M, CAMPOLO M,et al. The anti-inflammatory and antioxidant effects of sodium propionate[J]. Int J Mol Sci, 2020, 21(8):3026. DOI: 10.3390/ijms21083026.
|
[37] |
AGUILAR E C, SANTOS L C, LEONEL A J,et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells[J]. J Nutr Biochem, 2016, 34:99-105. DOI: 10.1016/j.jnutbio.2016.05.002.
|
[38] |
LI H R, UITTENBOGAARD M, HAO L,et al. Clinical insights into mitochondrial neurodevelopmental and neurodegenerative disorders:their biosignatures from mass spectrometry-based metabolomics[J]. Metabolites, 2021, 11(4):233. DOI: 10.3390/metabo11040233.
|
[39] |
施蕴渝,张亮. 线粒体与神经退行性疾病[J]. 生物学杂志,2022,39(2):1-10.
|
[40] |
TANG Y, CHEN Y, JIANG H,et al. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death[J]. Cell Death Differ, 2011, 18(4):602-618. DOI: 10.1038/cdd.2010.117.
|
[41] |
ROSE S, BENNURI S C, DAVIS J E,et al. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism[J]. Transl Psychiatry, 2018, 8:42. DOI: 10.1038/s41398-017-0089-z.
|
[42] |
WANG C, ZHENG D P, WENG F L,et al. Sodium butyrate ameliorates the cognitive impairment of Alzheimer's disease by regulating the metabolism of astrocytes[J]. Psychopharmacology, 2022, 239(1):215-227. DOI: 10.1007/s00213-021-06025-0.
|
[43] |
LIU Z G, DAI X S, ZHANG H B,et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment[J]. Nat Commun, 2020, 11(1):855. DOI: 10.1038/s41467-020-14676-4.
|
[44] |
DUSCHA A, GISEVIUS B, HIRSCHBERG S,et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism[J]. Cell, 2020, 180(6):1067-1080.e16. DOI: 10.1016/j.cell.2020.02.035.
|
[45] |
LAGO-BALDAIA I, FERNANDES V M, ACKERMAN S D. More than mortar:Glia as architects of nervous system development and disease[J]. Front Cell Dev Biol, 2020, 8:611269. DOI: 10.3389/fcell.2020.611269.
|
[46] |
VILLA A, VEGETO E, POLETTI A,et al. Estrogens,neuroinflammation,and neurodegeneration[J]. Endocr Rev, 2016, 37(4):372-402. DOI: 10.1210/er.2016-1007.
|
[47] |
MATT S M, ALLEN J M, LAWSON M A,et al. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice[J]. Front Immunol, 2018, 9:1832. DOI: 10.3389/fimmu.2018.01832.
|
[48] |
ERNY D, HRABE DE ANGELIS A L, JAITIN D,et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015, 18(7):965-977. DOI: 10.1038/nn.4030.
|
[49] |
SADLER R, CRAMER J V, HEINDL S,et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms[J]. J Neurosci, 2020, 40(5):1162-1173. DOI: 10.1523/jneurosci.1359-19.2019.
|
[50] |
LIU J M, LI H J, GONG T Y,et al. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer's disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB[J]. J Agric Food Chem, 2020, 68(27):7152-7161. DOI: 10.1021/acs.jafc.0c02807.
|
[51] |
COLOMBO A V, SADLER R K, LLOVERA G,et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition[J]. eLife, 2021, 10:e59826. DOI: 10.7554/eLife.59826.
|
[52] |
ERNY D, DOKALIS N, MEZÖ C,et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease[J]. Cell Metab, 2021, 33(11):2260-2276.e7. DOI: 10.1016/j.cmet.2021.10.010.
|
[53] |
LIU J M, WANG F Y, LIU S Z,et al. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1[J]. J Neurol Sci, 2017, 381:176-181. DOI: 10.1016/j.jns.2017.08.3235.
|