[1] |
ANDERSON N D. State of the science on mild cognitive impairment(MCI)[J]. CNS Spectrums,2019,24(1):78-87.
|
[2] |
LUO Y, TAN L, THERRIAULT J, et al. The role of apolipoprotein E ε4 in early and late mild cognitive impairment[J]. European Neurology,2021,84(6):472-480.
|
[3] |
LEONENKO G, SHOAI M, BELLOU E, et al. Genetic risk for Alzheimer disease is distinct from genetic risk for amyloid deposition[J]. Annals of Neurology,2019,86(3):427-435.
|
[4] |
ABRAHAM G, MALIK R, YONOVA-DOING E, et al. Genomic risk SCORE offers predictive performance comparable to clinical risk factors for ischaemic stroke[J]. Nature Communications,2019,10(1):1-10.
|
[5] |
RITCHIE K. Mild cognitive impairment:an epidemiological perspective[J]. Dialogues Clin Neurosci,2004,6(4):401-408.
|
[6] |
LEONENKO G, BAKER E, STEVENSON-HOARE J, et al. Identifying individuals with high risk of Alzheimer's disease using polygenic risk SCOREs[J]. Nat Commun,2021,12(1):4506.
|
[7] |
VAN DEN BERG E, GEERLINGS M I, BIESSELS G J, et al. White matter hyperintensities and cognition in mild cognitive impairment and Alzheimer's disease:a domain-specific meta-analysis[J]. Journal of Alzheimer's Disease,2018,63(2):515-527.
|
[8] |
ZACKOVÁ L, JÁNI M, BRÁZDIL M, et al. Cognitive impairment and depression:meta-analysis of structural magnetic resonance imaging studies[J]. Neuroimage Clin,2021,32:102830.
|
[9] |
REED E, NUNEZ S, KULP D, et al. A guide to genome-wide association analysis and post-analytic interrogation[J]. Statistics in Medicine, 2015, 34(28):3769-3792. DOI: 10.1002/sim.6605.
|
[10] |
牛晓歌. 基于大型前瞻性队列构建和评价中国人群脑卒中多基因遗传风险评分[D]. 北京:北京协和医学院,2021.
|
[11] |
ANDREWS S J, FULTON-HOWARD B, GOATE A. Interpretation of risk loci from genome-wide association studies of Alzheimer's disease[J]. Lancet Neurology,2020,19(4):326-335.
|
[12] |
BELLOU E, BAKER E, LEONENKO G, et al. Age-dependent effect of APOE and polygenic component on Alzheimer's disease[J]. Neurobiology of Aging,2020,93:69-77.
|
[13] |
BONHAM L W, GEIER E G, FAN C C, et al. Age-dependent effects of APOE epsilon4 in preclinical Alzheimer's disease[J]. Ann Clin Transl Neurol,2016,3(9):668-677.
|
[14] |
CHEN T,GUESTRIN C. XGBoost:A scalable tree boosting system. KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 2016:785-794[Z]. 2016
|
[15] |
EATON J E, VESTERHUS M, MCCAULEY B M, et al. Primary sclerosing cholangitis risk estimate tool(PREsTo) predicts outcomes of the disease:a derivation and validation study using machine learning[J]. Hepatology,2020,71(1):214-224.
|
[16] |
TIBSHIRANI R. The lasso method for variable selection in the Cox model[J]. Statistics in Medicine,1997,16(4):385-395.
|
[17] |
DUDBRIDGE F, GUSNANTO A. Estimation of significance thresholds for genomewide association scans[J]. Genetic Epidemiology,2008,32(3):227-234.
|
[18] |
EDMONDSON A C, BRAUND P S, STYLIANOU I M, et al. Dense genotyping of candidate gene loci identifies variants associated with high-density lipoprotein cholesterol[J]. Circ Cardiovasc Genet,2011,4(2):145-155.
|
[19] |
LI J, LU Q, WEN Y. Multi-kernel linear mixed model with adaptive lasso for prediction analysis on high-dimensional multi-omics data[J]. Bioinformatics,2020,36(6):1785-1794.
|
[20] |
CHRISTODOULOU E, MA J, COLLINS G S, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models[J]. Journal of Clinical Epidemiology,2019,110:12-22.
|
[21] |
RÁCZ A, BAJUSZ D, HÉBERGER K. Effect of dataset size and train/test split ratios in QSAR/QSPR multiclass classification[J]. Molecules,2021,26(4):1111.
|