[1] |
O'CAOIMH R, SEZGIN D, O'DONOVAN M R, et al. Prevalence of frailty in 62 countries across the world:a systematic review and meta-analysis of population-level studies[J]. Age Ageing, 2021, 50(1):96-104. DOI: 10.1093/ageing/afaa219.
|
[2] |
RATTRAY N J W, TRIVEDI D K, XU Y, et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty[J]. Nat Commun, 2019, 10(1):5027. DOI: 10.1038/s41467-019-12716-2.
|
[3] |
STERNBERG S A, WERSHOF SCHWARTZ A, KARUNANANTHAN S, et al. The identification of frailty:a systematic literature review[J]. J Am Geriatr Soc, 2011, 59(11):2129-2138. DOI: 10.1111/j.1532-5415.2011.03597.x.
|
[4] |
LOOMAN W M, FABBRICOTTI I N, BLOM J W, et al. The frail older person does not exist:development of frailty profiles with latent class analysis[J]. BMC Geriatr, 2018, 18(1):84. DOI: 10.1186/s12877-018-0776-5.
|
[5] |
ERUSALIMSKY J D, GRILLARI J, GRUNE T, et al. In search of 'omics'-based biomarkers to predict risk of frailty and its consequences in older individuals:the FRAILOMIC initiative[J]. Gerontology, 2016, 62(2):182-190. DOI: 10.1159/000435853.
|
[6] |
VIÑA J, TARAZONA-SANTABALBINA F J, PÉREZ-ROS P, et al. Biology of frailty:modulation of ageing genes and its importance to prevent age-associated loss of function[J]. Mol Aspects Med, 2016, 50:88-108. DOI: 10.1016/j.mam.2016.04.005.
|
[7] |
MACAULEY A, LADIGES W C. Approaches to determine clinical significance of genetic variants[J]. Mutat Res, 2005, 573(1/2):205-220. DOI: 10.1016/j.mrfmmm.2005.01.009.
|
[8] |
INGLES M, MAS-BARGUES C, GIMENO-MALLENCH L, et al. Relation between genetic factors and frailty in older adults [J]. J Am Med Dir Assoc, 2019, 20(11):1451-1457. DOI: 10.1016/j.jamda.2019.03.011.
|
[9] |
GALE C R, MARIONI R E, HARRIS S E, et al. DNA methylation and the epigenetic clock in relation to physical frailty in older people:the Lothian Birth Cohort 1936 [J]. Clin Epigenetics, 2018, 10(1):101. DOI: 10.1186/s13148-018-0538-4.
|
[10] |
GENSOUS N, BACALINI M G, PIRAZZINI C, et al. The epigenetic landscape of age-related diseases:the geroscience perspective[J]. Biogerontology, 2017, 18(4):549-559. DOI: 10.1007/s10522-017-9695-7.
|
[11] |
COLLERTON J, GAUTREY H E, VAN OTTERDIJK S D, et al. Acquisition of aberrant DNA methylation is associated with frailty in the very old:findings from the Newcastle 85+ Study[J]. Biogerontology, 2014, 15(4):317-328. DOI: 10.1007/s10522-014-9500-9.
|
[12] |
MCCRORY C, FIORITO G, HERNANDEZ B, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(5):741-749. DOI: 10.1093/gerona/glaa286.
|
[13] |
LEVINE M E, LU A T, QUACH A, et al. An epigenetic biomarker of aging for lifespan and healthspan[J]. Aging:Albany NY, 2018, 10(4):573-591. DOI: 10.18632/aging.101414.
|
[14] |
BELL C G, LOWE R, ADAMS P D, et al. DNA methylation aging clocks:challenges and recommendations[J]. Genome Biol, 2019, 20(1):249. DOI: 10.1186/s13059-019-1824-y.
|
[15] |
IPSON B R, FLETCHER M B, ESPINOZA S E, et al. Identifying exosome-derived microRNAs as candidate biomarkers of frailty[J]. J Frailty Aging, 2018, 7(2):100-103. DOI: 10.14283/jfa.2017.45.
|
[16] |
RUSANOVA I, FERNANDEZ-MARTINEZ J, FERNANDEZ-ORTIZ M, et al. Involvement of plasma miRNAs,muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty [J]. Exp Gerontol, 2019, 124:110637. DOI: 10.1016/j.exger.2019.110637.
|
[17] |
KENNETH R, HOWLETT SUSAN E. Fifteen years of progress in understanding frailty and health in aging[J]. BMC Med,2018,16(1):220.
|
[18] |
LI C W, WANG W H, CHEN B S. Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells[J]. Oncotarget, 2016, 7(8):8556-8579. DOI: 10.18632/oncotarget.7388.
|
[19] |
CAPRI M, MORSIANI C, SANTORO A, et al. Recovery from 6-month spaceflight at the International Space Station:muscle-related stress into a proinflammatory setting[J]. FASEB J, 2019, 33(4):5168-5180. DOI: 10.1096/fj.201801625r.
|
[20] |
ELSHARAWY A, KELLER A, FLACHSBART F, et al. Genome-wide miRNA signatures of human longevity[J]. Aging Cell, 2012, 11(4):607-616. DOI: 10.1111/j.1474-9726.2012.00824.x.
|
[21] |
HOLMBERG J, ALAJBEGOVIC A, GAWLIK K I, et al. Laminin α2 chain-deficiency is associated with microRNA deregulation in skeletal muscle and plasma[J]. Front Aging Neurosci, 2014, 6:155. DOI: 10.3389/fnagi.2014.00155.
|
[22] |
COPPE J P, PATIL C K, RODIER F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol, 2008, 6(12):2853-2868. DOI: 10.1371/journal.pbio.0060301.
|
[23] |
DI FILIPPO E S, MANCINELLI R, PIETRANGELO T, et al. Myomir dysregulation and reactive oxygen species in aged human satellite cells[J]. Biochem Biophys Res Commun, 2016, 473(2):462-470. DOI: 10.1016/j.bbrc.2016.03.030.
|
[24] |
ZHENG Y, KONG J, LI Q, et al. Role of miRNAs in skeletal muscle aging[J]. Clin Interv Aging, 2018, 13:2407-2419. DOI: 10.2147/cia.s169202.
|
[25] |
SZEWCZYK-GOLEC K, CZUCZEJKO J, TYLZANOWSKI P, et al. Strategies for modulating oxidative stress under diverse physiological and pathological conditions[J]. Oxid Med Cell Longev, 2018, 2018:3987941. DOI: 10.1155/2018/3987941.
|
[26] |
PRINCE C S, NOREN HOOTEN N, MODE N A, et al. Frailty in middle age is associated with frailty status and race-specific changes to the transcriptome[J]. Aging:Albany NY, 2019, 11(15):5518-5534. DOI: 10.18632/aging.102135.
|
[27] |
ZHANG Y, CHATZISTAMOU I, KIARIS H. Identification of frailty-associated genes by coordination analysis of gene expression[J]. Aging:Albany NY, 2020, 12(5):4222-4229. DOI: 10.18632/aging.102875.
|
[28] |
CARDOSO A L, FERNANDES A, AGUILAR-PIMENTEL J A, et al. Towards frailty biomarkers:candidates from genes and pathways regulated in aging and age-related diseases[J]. Ageing Res Rev, 2018, 47:214-277. DOI: 10.1016/j.arr.2018.07.004.
|
[29] |
DANESE E, MONTAGNANA M, LIPPI G. Proteomics and frailty:a clinical overview[J]. Expert Rev Proteomics, 2018, 15(8):657-664. DOI: 10.1080/14789450.2018.1505511.
|
[30] |
UBAIDA-MOHIEN C, LYASHKOV A, GONZALEZ-FREIRE M, et al. Discovery proteomics in aging human skeletal muscle finds change in spliceosome,immunity,proteostasis and mitochondria[J]. Elife, 2019, 8:e49874. DOI: 10.7554/elife.49874.
|
[31] |
MICHAUD M, BALARDY L, MOULIS G, et al. Proinflammatory cytokines,aging,and age-related diseases[J]. J Am Med Dir Assoc, 2013, 14(12):877-882. DOI: 10.1016/j.jamda.2013.05.009.
|
[32] |
CHEW J, TAY L, LIM J P, et al. Serum myostatin and IGF-1 as gender-specific biomarkers of frailty and low muscle mass in community-dwelling older adults[J]. J Nutr Health Aging, 2019, 23(10):979-986. DOI: 10.1007/s12603-019-1255-1.
|
[33] |
LIN C H, LIAO C C, HUANG C H, et al. Proteomics analysis to identify and characterize the biomarkers and physical activities of non-frail and frail older adults[J]. Int J Med Sci, 2017, 14(3):231-239. DOI: 10.7150/ijms.17627.
|
[34] |
FRIED L P, TANGEN C M, WALSTON J, et al. Frailty in older adults:evidence for a phenotype[J]. J Gerontol A Biol Sci Med Sci, 2001, 56(3):M146-157. DOI: 10.1093/gerona/56.3.M146.
|
[35] |
WESTBROOK R, ZHANG C, YANG H L, et al. Metabolomics-based identification of metabolic dysfunction in frailty[J]. J Gerontol A Biol Sci Med Sci, 2022, 77(12):2367-2372. DOI: 10.1093/gerona/glab315.
|
[36] |
RAMÍREZ-VÉLEZ R, MARTÍNEZ-VELILLA N, CORREA-RODRÍGUEZ M, et al. Lipidomic signatures from physically frail and robust older adults at hospital admission[J]. Geroscience, 2022, 44(3):1677-1688. DOI: 10.1007/s11357-021-00511-1.
|
[37] |
MOADDEL R, FABBRI E, KHADEER M A, et al. Plasma biomarkers of poor muscle quality in older men and women from the Baltimore longitudinal study of aging[J]. J Gerontol A Biol Sci Med Sci, 2016, 71(10):1266-1272. DOI: 10.1093/gerona/glw046.
|
[38] |
FERRUCCI L, ZAMPINO M. A mitochondrial root to accelerated ageing and frailty[J]. Nat Rev Endocrinol, 2020, 16(3):133-134. DOI: 10.1038/s41574-020-0319-y.
|
[39] |
CALVANI R, PICCA A, MARINI F, et al. The "BIOmarkers associated with Sarcopenia and PHysical frailty in EldeRly pErsons" (BIOSPHERE)study:rationale,design and methods[J]. Eur J Intern Med, 2018, 56:19-25. DOI: 10.1016/j.ejim.2018.05.001.
|
[40] |
HSU B, CUMMING R G, HANDELSMAN D J. Testosterone,frailty and physical function in older men[J]. Expert Rev Endocrinol Metab, 2018, 13(3):159-165. DOI: 10.1080/17446651.2018.1475227.
|
[41] |
SRINIVAS-SHANKAR U, ROBERTS S A, CONNOLLY M J, et al. Effects of testosterone on muscle strength,physical function,body composition,and quality of life in intermediate-frail and frail elderly men:a randomized,double-blind,placebo-controlled study[J]. J Clin Endocrinol Metab, 2010, 95(2):639-650. DOI: 10.1210/jc.2009-1251.
|
[42] |
KENNY A M, BOXER R S, KLEPPINGER A, et al. Dehydroepiandrosterone combined with exercise improves muscle strength and physical function in frail older women[J]. J Am Geriatr Soc, 2010, 58(9):1707-1714. DOI: 10.1111/j.1532-5415.2010.03019.x.
|
[43] |
CARCAILLON L, GARCIA-GARCIA F J, TRESGUERRES J A, et al. Higher levels of endogenous estradiol are associated with frailty in postmenopausal women from the Toledo study for healthy aging[J]. J Clin Endocrinol Metab, 2012, 97(8):2898-2906. DOI: 10.1210/jc.2012-1271.
|
[44] |
PAN Y, LI Y, MA L. Metabolites as frailty biomarkers in older adults[J]. Proc Natl Acad Sci USA, 2021, 118(1):e2016187118. DOI: 10.1073/pnas.2016187118.
|
[45] |
MENG L, SHI H, WANG D G, et al. Specific metabolites involved in antioxidation and mitochondrial function are correlated with frailty in elderly men [J]. Front Med(Lausanne), 2022, 9:816045. DOI: 10.3389/fmed.2022.816045.
|
[46] |
LIU C K, LYASS A, LARSON M G, et al. Biomarkers of oxidative stress are associated with frailty:the Framingham Offspring Study[J]. Age:Dordr, 2016, 38(1):1. DOI: 10.1007/s11357-015-9864-z.
|