[1] |
World Population Ageing 2020 Highlights[Z]. 2020.
|
[2] |
KATSUNO M, SAHASHI K, IGUCHI Y,et al. Preclinical progression of neurodegenerative diseases[J]. Nagoya J Med Sci, 2018, 80(3):289-298. DOI: 10.18999/nagjms.80.3.289.
|
[3] |
GOLPICH M, AMINI E, MOHAMED Z,et al. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases:pathogenesis and treatment[J]. CNS Neurosci Ther, 2017, 23(1):5-22. DOI: 10.1111/cns.12655.
|
[4] |
AMORIM J A, COPPOTELLI G, ROLO A P,et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases[J]. Nat Rev Endocrinol, 2022, 18(4):243-258. DOI: 10.1038/s41574-021-00626-7.
|
[5] |
JOHNSON J, MERCADO-AYON E, MERCADO-AYON Y,et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases[J]. Arch Biochem Biophys, 2021, 702:108698. DOI: 10.1016/j.abb.2020.108698.
|
[6] |
OOI T C, MERAMAT A, RAJAB N F,et al. Intermittent fasting enhanced the cognitive function in older adults with mild cognitive impairment by inducing biochemical and metabolic changes:a 3-year progressive study[J]. Nutrients, 2020, 12(9):E2644. DOI: 10.3390/nu12092644.
|
[7] |
NASARUDDIN M L, SYED ABD HALIM S A, KAMARUZZAMAN M A. Studying the relationship of intermittent fasting and β-amyloid in animal model of Alzheimer's disease:a scoping review[J]. Nutrients, 2020, 12(10):3215. DOI: 10.3390/nu12103215.
|
[8] |
LEUNG Y B, CAVE N J, HEISER A,et al. Metabolic and immunological effects of intermittent fasting on a ketogenic diet containing medium-chain triglycerides in healthy dogs[J]. Front Vet Sci, 2019, 6:480. DOI: 10.3389/fvets.2019.00480.
|
[9] |
RAEFSKY S M, MATTSON M P. Adaptive responses of neuronal mitochondria to bioenergetic challenges:roles in neuroplasticity and disease resistance[J]. Free Radic Biol Med, 2017, 102:203-216. DOI: 10.1016/j.freeradbiomed.2016.11.045.
|
[10] |
MATTSON M P, LONGO V D, HARVIE M. Impact of intermittent fasting on health and disease processes[J]. Ageing Res Rev, 2017, 39:46-58. DOI: 10.1016/j.arr.2016.10.005.
|
[11] |
STEKOVIC S, HOFER S J, TRIPOLT N,et al. Alternate day fasting improves physiological and molecular markers of aging in healthy,non-obese humans[J]. Cell Metab, 2020, 31(4):878-881. DOI: 10.1016/j.cmet.2020.02.011.
|
[12] |
RYNDERS C A, THOMAS E A, ZAMAN A,et al. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss[J]. Nutrients, 2019, 11(10):E2442. DOI: 10.3390/nu11102442.
|
[13] |
MINDIKOGLU A L, ABDULSADA M M, JAIN A,et al. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism,circadian clock,DNA repair,cytoskeleton remodeling,immune system and cognitive function in healthy subjects[J]. J Proteomics, 2020, 217:103645. DOI: 10.1016/j.jprot.2020.103645.
|
[14] |
CURRENTI W, GODOS J, CASTELLANO S,et al. Association between time restricted feeding and cognitive status in older Italian adults[J]. Nutrients, 2021, 13(1):E191. DOI: 10.3390/nu13010191.
|
[15] |
DE CABO R, MATTSON M P. Effects of intermittent fasting on health,aging,and disease[J]. N Engl J Med, 2019, 381(26):2541-2551. DOI: 10.1056/NEJMra1905136.
|
[16] |
SHIN B K, KANG S N, KIM D S,et al. Intermittent fasting protects against the deterioration of cognitive function,energy metabolism and dyslipidemia in Alzheimer's disease-induced estrogen deficient rats[J]. Exp Biol Med (Maywood), 2018, 243(4):334-343. DOI: 10.1177/1535370217751610.
|
[17] |
GUDDEN J, ARIAS VASQUEZ A, BLOEMENDAAL M. The effects of intermittent fasting on brain and cognitive function[J]. Nutrients, 2021, 13(9):3166. DOI: 10.3390/nu13093166.
|
[18] |
YANCKELLO L M, YOUNG L E A, HOFFMAN J D,et al. Caloric restriction alters postprandial responses of essential brain metabolites in young adult mice[J]. Front Nutr, 2019, 6:90. DOI: 10.3389/fnut.2019.00090.
|
[19] |
WANG W Z, ZHAO F P, MA X P,et al. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease:recent advances[J]. Mol Neurodegener, 2020, 15(1):30. DOI: 10.1186/s13024-020-00376-6.
|
[20] |
ZHANG H, ZHENG Y. β amyloid hypothesis in Alzheimer's disease:pathogenesis,prevention,and management[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2019, 41(5):702-708. DOI: 10.3881/j.issn.1000-503X.10875.
|
[21] |
LAJOIE I, NUGENT S, DEBACKER C,et al. Application of calibrated fMRI in Alzheimer's disease[J]. Neuroimage Clin, 2017, 15:348-358. DOI: 10.1016/j.nicl.2017.05.009.
|
[22] |
SWERDLOW R H. Mitochondria and mitochondrial cascades in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 62(3):1403-1416. DOI: 10.3233/JAD-170585.
|
[23] |
PRADEEPKIRAN J A, REDDY P H. Defective mitophagy in Alzheimer's disease[J]. Ageing Res Rev, 2020, 64:101191. DOI: 10.1016/j.arr.2020.101191.
|
[24] |
GAO F, YANG J, WANG D D,et al. Mitophagy in Parkinson's disease:pathogenic and therapeutic implications[J]. Front Neurol, 2017, 8:527. DOI: 10.3389/fneur.2017.00527.
|
[25] |
SUBRAMANIAM S R, VERGNES L, FRANICH N R,et al. Region specific mitochondrial impairment in mice with widespread overexpression of alpha-synuclein[J]. Neurobiol Dis, 2014, 70:204-213. DOI: 10.1016/j.nbd.2014.06.017.
|
[26] |
LUTH E S, STAVROVSKAYA I G, BARTELS T,et al. Soluble,prefibrillar α-synuclein oligomers promote complex I-dependent,Ca 2+-induced mitochondrial dysfunction[J]. J Biol Chem, 2014, 289(31):21490-21507. DOI: 10.1074/jbc.M113.545749.
|
[27] |
MONZIO COMPAGNONI G, DI FONZO A, CORTI S,et al. The role of mitochondria in neurodegenerative diseases:the lesson from Alzheimer's disease and Parkinson's disease[J]. Mol Neurobiol, 2020, 57(7):2959-2980. DOI: 10.1007/s12035-020-01926-1.
|
[28] |
GONZÁLEZ-RODRÍGUEZ P, ZAMPESE E, STOUT K A,et al. Disruption of mitochondrial complex I induces progressive Parkinsonism[J]. Nature, 2021, 599(7886):650-656. DOI: 10.1038/s41586-021-04059-0.
|
[29] |
SAVENCU C E, LINTA A, FARCAS G,et al. Impact of dietary restriction regimens on mitochondria,heart,and endothelial function:a brief overview[J]. Front Physiol, 2021, 12:768383. DOI: 10.3389/fphys.2021.768383.
|
[30] |
BRUSS M D, KHAMBATTA C F, RUBY M A,et al. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates[J]. Am J Physiol Endocrinol Metab, 2010, 298(1):E108-116. DOI: 10.1152/ajpendo.00524.2009.
|
[31] |
HOFER S J, CARMONA-GUTIERREZ D, MUELLER M I,et al. The ups and Downs of caloric restriction and fasting:from molecular effects to clinical application[J]. EMBO Mol Med, 2022, 14(1):e14418. DOI: 10.15252/emmm.202114418.
|
[32] |
PARK S, ZHANG T, WU X G,et al. Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer's disease rat model[J]. J Clin Biochem Nutr, 2020, 67(2):188-198. DOI: 10.3164/jcbn.19-87.
|
[33] |
SECOR S M, CAREY H V. Integrative physiology of fasting[J]. Compr Physiol, 2016, 6(2):773-825. DOI: 10.1002/cphy.c150013.
|
[34] |
ZHAO M, WANG Y Z, LI L,et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance[J]. Theranostics, 2021, 11(4):1845-1863. DOI: 10.7150/thno.50905.
|
[35] |
WEGMAN M P, GUO M H, BENNION D M,et al. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism[J]. Rejuvenation Res, 2015, 18(2):162-172. DOI: 10.1089/rej.2014.1624.
|
[36] |
CHAUSSE B, VIEIRA-LARA M A, SANCHEZ A B,et al. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state[J]. PLoS One, 2015, 10(3):e0120413. DOI: 10.1371/journal.pone.0120413.
|
[37] |
KONG C, SONG W, FU T. Systemic inflammatory response syndrome is triggered by mitochondrial damage (Review)[J]. Mol Med Rep, 2022, 25(4):147. DOI: 10.3892/mmr.2022.12663.
|
[38] |
LIU Z G, DAI X S, ZHANG H B,et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment[J]. Nat Commun, 2020, 11(1):855. DOI: 10.1038/s41467-020-14676-4.
|
[39] |
WANG Y, XU E, MUSICH P R,et al. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure[J]. CNS Neurosci Ther, 2019, 25(7):816-824. DOI: 10.1111/cns.13116.
|
[40] |
SERRANO N, TRAN L, HOFFMAN N,et al. Lack of increase in muscle mitochondrial protein synthesis during the course of aerobic exercise and its recovery in the fasting state irrespective of obesity[J]. Front Physiol, 2021, 12:702742. DOI: 10.3389/fphys.2021.702742.
|
[41] |
HAILESELASSIE B, JOSHI A U, MINHAS P S,et al. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy[J]. J Neuroinflammation, 2020, 17(1):36. DOI: 10.1186/s12974-019-1689-8.
|
[42] |
KHRAIWESH H, LÓPEZ-DOMÍNGUEZ J A, LÓPEZ-LLUCH G,et al. Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(9):1023-1034. DOI: 10.1093/gerona/glt006.
|
[43] |
ASHRAFI G, SCHWARZ T L. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1):31-42. DOI: 10.1038/cdd.2012.81.
|
[44] |
HOOD D A, TRYON L D, CARTER H N,et al. Unravelling the mechanisms regulating muscle mitochondrial biogenesis[J]. Biochem J, 2016, 473(15):2295-2314. DOI: 10.1042/BCJ20160009.
|
[45] |
CARNEIRO L, PELLERIN L. Nutritional impact on metabolic homeostasis and brain health[J]. Front Neurosci, 2022, 15:767405. DOI: 10.3389/fnins.2021.767405.
|
[46] |
LEE Y H, HSU H C, KAO P C,et al. Augmented insulin and leptin resistance of high fat diet-fed APPswe/PS1dE9 transgenic mice exacerbate obesity and glycemic dysregulation[J]. Int J Mol Sci, 2018, 19(8):E2333. DOI: 10.3390/ijms19082333.
|
[47] |
EMELYANOVA L, BOUKATINA A, MYERS C,et al. High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart[J]. PLoS One, 2019, 14(7):e0217045. DOI: 10.1371/journal.pone.0217045.
|
[48] |
MAIUOLO J, GLIOZZI M, MUSOLINO V,et al. Environmental and nutritional "stressors" and oligodendrocyte dysfunction:role of mitochondrial and endoplasmatic Reticulum impairment[J]. Biomedicines, 2020, 8(12):E553. DOI: 10.3390/biomedicines8120553.
|
[49] |
DE CARVALHO T S. Calorie restriction or dietary restriction:how far they can protect the brain against neurodegenerative diseases? [J]. Neural Regen Res, 2022, 17(8):1640-1644. DOI: 10.4103/1673-5374.332126.
|
[50] |
BIANCHI V E, HERRERA P F, LAURA R. Effect of nutrition on neurodegenerative diseases. A systematic review[J]. Nutr Neurosci, 2021, 24(10):810-834. DOI: 10.1080/1028415X.2019.1681088.
|