中国全科医学 ›› 2022, Vol. 25 ›› Issue (31): 3857-3865.DOI: 10.12114/j.issn.1007-9572.2022.0437

所属专题: 神经退行性病变最新文章合集 阿尔茨海默病最新文章合集

• 论著·认知障碍专题研究 • 上一篇    下一篇

基于步态的机器学习模型识别遗忘型轻度认知障碍和阿尔茨海默病

陶帅1, 韩星1, 孔丽文1, 汪祖民1, 谢海群2,*()   

  1. 1.116622 辽宁省大连市,大连大学大连市智慧医疗与健康重点实验室
    2.528010 广东省佛山市,佛山市第一人民医院神经内科
  • 收稿日期:2022-06-22 修回日期:2022-08-06 出版日期:2022-11-05 发布日期:2022-09-19
  • 通讯作者: 谢海群
  • 陶帅,韩星,孔丽文,等.基于步态的机器学习模型识别遗忘型轻度认知障碍和阿尔茨海默病[J].中国全科医学,2022,25(31):3857-3865.[www.chinagp.net]
    作者贡献:陶帅负责资金提供、调查开展、概念提出;韩星负责形式分析、方法学、软件、原稿创作;孔丽文负责项目管理、监督、验证;汪祖民负责可视化、审查和写作;谢海群负责数据管理、资源提供。
  • 基金资助:
    国家重点研发计划(2018YFC2001700)

Machine Learning-based Gait Analysis for Recognition of Amnestic Mild Cognitive Impairment and Alzheimer's Disease

TAO Shuai1, HAN Xing1, KONG Liwen1, WANG Zumin1, XIE Haiqun2,*()   

  1. 1.Dalian Key Laboratory of Smart Medical and Health, Dalian University, Dalian 116622, China
    2.Department of Neurology, the First People's Hospital of Foshan, Foshan 528010, China
  • Received:2022-06-22 Revised:2022-08-06 Published:2022-11-05 Online:2022-09-19
  • Contact: XIE Haiqun
  • About author:
    TAO S, HAN X, KONG L W, et al. Machine learning-based gait analysis for recognition of amnestic mild cognitive impairment and Alzheimer's disease [J] . Chinese General Practice, 2022, 25 (31) : 3857-3865.

摘要: 背景 随着老龄化社会的到来,与年龄密切相关的认知障碍(包括痴呆)的患病率明显增加。先前的研究表明,具有不同认知能力的人群所表现的步态状态也不一样。过去研究者们在研究遗忘型轻度认知障碍(aMCI)和阿尔茨海默病(AD)的步态时,使用了统计分析方法,对机器学习方法的使用较少。 目的 构建基于步态的机器学习模型识别aMCI和AD,探索aMCI和AD之间的步态标志物,以便将其用作帮助诊断aMCI患者和AD患者的可能工具。 方法 于2018年12月至2020年12月,从国家康复辅具研究中心附属康复医院、佛山市第一人民医院、大连大学附属中山医院招募了102例受试者,按照筛选标准最终纳入98例受试者,其中55例为aMCI患者,10例为AD患者,33例为健康对照(HC)者。使用可穿戴设备采集参与者在单任务(自由行走)、双任务(倍数7)和双任务(倒数100)时的步态参数。使用随机森林算法(RF)和梯度提升决策树算法(GBDT)建立模型,10个步态参数作为预测变量,疾病状态(HC、aMCI、AD)作为响应变量,比较两种机器学习算法对3个疾病组的识别效果。然后使用机器学习算法结合递归特征消除法(RFE)进行重要特征选择。 结果 三组年龄、性别、身高、体质量、鞋码比较,差异无统计学意义(P>0.05);MMSE评分、MoCA评分比较,差异有统计学意义(P<0.05)。自由行走测试时,aMCI组和AD组受试者步幅较HC组短,足跟着地角度较HC组小;AD组步速较HC组和aMCI组受试者慢,足趾离地角度较HC组小(P<0.05)。双任务倍数7测试时,aMCI组和AD组受试者步速较HC组慢,足趾离地角度和足跟着地角度较HC组小;AD组支撑时间较HC组长,足趾离地角度较aMCI组小(P<0.05)。双任务倒数100测试时,AD组步速较HC组和aMCI组受试者慢,足趾离地角度和足跟着地角度较HC组和aMCI组小,步幅较HC组短;aMCI组足跟着地角度较HC组小(P<0.05)。GBDT-RFE方法发现aMCI和AD之间的重要步态特征是步幅、足趾离地角度和足跟着地角度,并在RF模型中实现了识别aMCI和AD的最佳性能,最高准确率为87.69%。 结论 步幅、足趾离地角度和足跟着地角度是识别aMCI患者和AD患者的重要步态标志物,未来临床医生可依据重要步态标志物诊断和治疗aMCI患者和AD患者。

关键词: 认知功能障碍, 遗忘型轻度认知障碍, 阿尔茨海默病, 步态分析, 随机森林算法, 梯度提升决策树算法

Abstract:

Background

The prevalence of age-related cognitive impairment, including dementia, has significantly increased with population aging. It has been shown that cognitive function is associated with gait status. Previously, researchers used statistical analysis methods instead of machine learning methods to study the gait of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) .

Objective

To develop a model to identify aMCI and AD based on gait status using machine learning methods, explore gait markers differentiating between aMCI and AD, and to assess their possible values as aided tools in diagnosing aMCI and AD.

Methods

We recruited 102 cases from the Rehabilitation Hospital Affiliated to National Research Center for Rehabilitation Technical Aids, the First People's Hospital of Foshan, and Affiliated Zhongshan Hospital of Dalian University from December 2018 to December 2020, and included 98 of them according to the screening criteria, including 55 patients with aMCI, 10 patients with AD, and 33 healthy controls (HC) . The gait parameters of the participants were collected during performing single-task (free walking) , dual-task (counting backwards in sevens) and another dual-task (counting backwards from 100) using a wearable device. Random forest (RF) algorithm and gradient boosting decision tree (GBDT) algorithm were separately used to establish a model to compare the effect of two algorithms in recognizing three groups, with 10 gait parameters as predictive variables and the physical status (healthy, aMCI, AD) as response variables. Then important features were chosen using a machine learning algorithm combined with recursive feature elimination (RFE) .

Results

No statistically significant differences were found among the three groups in terms of sex ratio, average age, height, body weight or shoe size (P>0.05) , while the differences in terms of average MMSE score and MoCA score were statistically significant (P<0.05) . In the free walking test, aMCI group and AD group had shorter average stride length and smaller average heel-to-ground angle (HtA) than HC group (P<0.05) . AD group had slower average gait speed and smaller average toe-off angle (ToA) than both HC group and aMCI group (P<0.05) . In performing the dual-task of counting backwards in sevens, compared with HC group, aMCI group and AD group had slower average gait speed and smaller average ToA and HtA (P<0.05) . AD group had longer average stance phase than HC group (P<0.05) . AD group had average smaller ToA than aMCI group (P<0.05) .In performing the dual-task of counting backwards from 100, AD group had slower average gait speed and smaller average HtA and ToA than both HC group and aMCI group (P<0.05) . Moreover, AD group had shorter average stride length than HC group (P<0.05) . The average HtA in aMCI group was smaller than that in HC group (P<0.05) . Using the GBDT-RFE method, we found important gait features in distinguishing between aMCI and AD to be the stride length, ToA and HtA, and the model using the RF algorithm performed better in identifying aMCI and AD, with an accuracy as high as 87.69%.

Conclusion

Stride length, ToA and HtA are important gait markers to identify aMCI and AD. These findings could help clinicians diagnose aMCI and AD in the future.

Key words: Cognitive dysfunction, Amnestic mild cognitive impairment, Alzheimer's disease, Gait analysis, Random forest, Gradient boosting decision tree