[1] |
|
[2] |
MURRAY C J L, LOPEZ A D. Measuring the global burden of disease[J]. N Engl J Med, 2013, 369(5):448-457. DOI: 10.1056/NEJMra1201534.
|
[3] |
HE F J, LI J F, MACGREGOR G A. Effect of longer term modest salt reduction on blood pressure:Cochrane systematic review and meta-analysis of randomised trials[J]. BMJ, 2013, 346:f1325. DOI: 10.1136/bmj.f1325.
|
[4] |
MELL B, JALA V R, MATHEW A V, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat[J]. Physiol Genomics, 2015, 47(6):187-197. DOI: 10.1152/physiolgenomics.00136.2014.
|
[5] |
FERGUSON J F, ADEN L A, BARBARO N R, et al. High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension[J]. JCI Insight, 2019, 5:126241. DOI: 10.1172/jci.insight.126241.
|
[6] |
VAN BEUSECUM J P, BARBARO N R, MCDOWELL Z, et al. High salt activates CD11c+ antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension[J]. Hypertension, 2019, 74(3):555-563. DOI: 10.1161/HYPERTENSIONAHA.119.12761.
|
[7] |
ELIJOVICH F, LAFFER C L, SAHINOZ M, et al. The gut microbiome,inflammation,and salt-sensitive hypertension[J]. Curr Hypertens Rep, 2020, 22(10):79. DOI: 10.1007/s11906-020-01091-9.
|
[8] |
WILCK N, MATUS M G, KEARNEY S M, et al. Salt-responsive gut commensal modulates TH17 axis and disease[J]. Nature, 2017, 551(7682):585-589. DOI: 10.1038/nature24628.
|
[9] |
BIER A, BRAUN T, KHASBAB R, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model[J]. Nutrients, 2018, 10(9):E1154. DOI: 10.3390/nu10091154.
|
[10] |
WANG C, HUANG Z X, YU K Q, et al. High-salt diet has a certain impact on protein digestion and gut microbiota:a sequencing and proteome combined study[J]. Front Microbiol, 2017, 8:1838. DOI: 10.3389/fmicb.2017.01838.
|
[11] |
HE P J, YUN C C. Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3[J]. J Biomed Biotechnol, 2010, 2010:238080. DOI: 10.1155/2010/238080.
|
[12] |
LINZ D, WIRTH K, LINZ W, et al. Antihypertensive and laxative effects by pharmacological inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut[J]. Hypertension, 2012, 60(6):1560-1567. DOI: 10.1161/HYPERTENSIONAHA.112.201590.
|
[13] |
ENGEVIK M A, AIHARA E, MONTROSE M H, et al. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(10):G697-711. DOI: 10.1152/ajpgi.00184.2013.
|
[14] |
LI X C, SOLEIMANI M, ZHU D M, et al. Proximal tubule-specific deletion of the NHE3(Na +/H + exchanger 3) promotes the pressure-natriuresis response and lowers blood pressure in mice[J]. Hypertension, 2018, 72(6):1328-1336. DOI: 10.1161/HYPERTENSIONAHA.118.10884.
|
[15] |
PLUZNICK J L, PROTZKO R J, GEVORGYAN H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J]. Proc Natl Acad Sci USA, 2013, 110(11):4410-4415. DOI: 10.1073/pnas.1215927110.
|
[16] |
MARQUES F Z, NELSON E, CHU P Y, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice[J]. Circulation, 2017, 135(10):964-977. DOI: 10.1161/CIRCULATIONAHA.116.024545.
|
[17] |
CHEN L, HE F J, DONG Y B, et al. Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives:a randomized,double-blind,placebo-controlled trial[J]. Hypertension, 2020, 76(1):73-79. DOI: 10.1161/HYPERTENSIONAHA.120.14800.
|
[18] |
POLL B G, CHEEMA M U, PLUZNICK J L. Gut microbial metabolites and blood pressure regulation:focus on SCFAs and TMAO[J]. Physiology (Bethesda), 2020, 35(4):275-284. DOI: 10.1152/physiol.00004.2020.
|
[19] |
NATARAJAN N, HORI D, FLAVAHAN S, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41[J]. Physiol Genomics, 2016, 48(11):826-834. DOI: 10.1152/physiolgenomics.00089.2016.
|
[20] |
KIMURA I, INOUE D, MAEDA T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)[J]. Proc Natl Acad Sci USA, 2011, 108(19):8030-8035. DOI: 10.1073/pnas.1016088108.
|
[21] |
D'SOUZA W N, DOUANGPANYA J, MU S, et al. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses[J]. PLoS One, 2017, 12(7):e0180190. DOI: 10.1371/journal.pone.0180190.
|
[22] |
LANIS J M, ALEXEEV E E, CURTIS V F, et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia[J]. Mucosal Immunol, 2017, 10(5):1133-1144. DOI: 10.1038/mi.2016.133.
|
[23] |
REZQ S, ABDEL-RAHMAN A A. Central GPR109A activation mediates glutamate-dependent pressor response in conscious rats[J]. J Pharmacol Exp Ther, 2016, 356(2):456-465. DOI: 10.1124/jpet.115.229146.
|
[24] |
GATAREK P, KALUZNA-CZAPLINSKA J. Trimethylamine N-oxide (TMAO) in human health[J]. EXCLI J, 2021, 20:301-319. DOI: 10.17179/excli2020-3239.
|
[25] |
XIAO H H, LU L, POON C C, et al. The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats[J]. Biomedecine Pharmacother, 2021, 137:111372. DOI: 10.1016/j.biopha.2021.111372.
|
[26] |
UFNAL M, JAZWIEC R, DADLEZ M, et al. Trimethylamine-N-oxide:a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin Ⅱ in rats[J]. Can J Cardiol, 2014, 30(12):1700-1705. DOI: 10.1016/j.cjca.2014.09.010.
|
[27] |
LIU J, LI T X, WU H, et al. Lactobacillus rhamnosus GG strain mitigated the development of obstructive sleep apnea-induced hypertension in a high salt diet via regulating TMAO level and CD 4+ T cell induced-typeⅠ inflammation[J]. Biomedecine Pharmacother, 2019, 112:108580. DOI: 10.1016/j.biopha.2019.01.041.
|
[28] |
BRUNT V E, CASSO A G, GIOSCIA-RYAN R A, et al. Gut microbiome-derived metabolite trimethylamine N-oxide induces aortic stiffening and increases systolic blood pressure with aging in mice and humans[J]. Hypertension, 2021, 78(2):499-511. DOI: 10.1161/HYPERTENSIONAHA.120.16895.
|
[29] |
JIANG S, SHUI Y J, CUI Y, et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensinⅡ-induced hypertension[J]. Redox Biol, 2021, 46:102115. DOI: 10.1016/j.redox.2021.102115.
|
[30] |
BROWN J M, HAZEN S L. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol, 2018, 16(3):171-181. DOI: 10.1038/nrmicro.2017.149.
|
[31] |
WINSTON J A, THERIOT C M. Diversification of host bile acids by members of the gut microbiota[J]. Gut Microbes, 2020, 11(2):158-171. DOI: 10.1080/19490976.2019.1674124.
|
[32] |
|
[33] |
ZHANG Y Q, WANG X P, VALES C, et al. FXR deficiency causes reduced atherosclerosis in Ldlr-/ - mice[J]. Arterioscler Thromb Vasc Biol, 2006, 26(10):2316-2321. DOI: 10.1161/01.ATV.0000235697.35431.05.
|
[34] |
FIORUCCI S, ZAMPELLA A, CIRINO G, et al. Decoding the vasoregulatory activities of bile acid-activated receptors in systemic and portal circulation:role of gaseous mediators[J]. Am J Physiol Heart Circ Physiol, 2017, 312(1):H21-32. DOI: 10.1152/ajpheart.00577.2016.
|
[35] |
ISLAM K B, FUKIYA S, HAGIO M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J]. Gastroenterology, 2011, 141(5):1773-1781. DOI: 10.1053/j.gastro.2011.07.046.
|
[36] |
FIORUCCI S, DISTRUTTI E. Bile acid-activated receptors,intestinal microbiota,and the treatment of metabolic disorders[J]. Trends Mol Med, 2015, 21(11):702-714. DOI: 10.1016/j.molmed.2015.09.001.
|
[37] |
WALLACE J L, WANG R. Hydrogen sulfide-based therapeutics:exploiting a unique but ubiquitous gasotransmitter[J]. Nat Rev Drug Discov, 2015, 14(5):329-345. DOI: 10.1038/nrd4433.
|
[38] |
JACKSON-WEAVER O, OSMOND J M, RIDDLE M A, et al. Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca 2+-activated K + channels and smooth muscle Ca 2+ Sparks[J]. Am J Physiol Heart Circ Physiol, 2013, 304(11):H1446-1454. DOI: 10.1152/ajpheart.00506.2012.
|
[39] |
徐明星,刘文秀,梁雨亭,等. 硫化氢在心血管疾病中的研究进展[J]. 中国现代医学杂志,2020,30(21):34-38.
|
[40] |
SHEN X G, CARLSTRÖM M, BORNIQUEL S, et al. Microbial regulation of host hydrogen sulfide bioavailability and metabolism[J]. Free Radic Biol Med, 2013, 60:195-200. DOI: 10.1016/j.freeradbiomed.2013.02.024.
|
[41] |
TOMASOVA L, DOBROWOLSKI L, JURKxOWSKA H, et al. Intracolonic hydrogen sulfide lowers blood pressure in rats[J]. Nitric Oxide, 2016, 60:50-58. DOI: 10.1016/j.niox.2016.09.007.
|
[42] |
LIAO Y Y, FAN Y Y, HE Q L, et al. Exogenous H 2S ameliorates high salt-induced hypertension by alleviating oxidative stress and inflammation in the paraventricular nucleus in dahl S rats[J]. Cardiovasc Toxicol, 2022, 22(5):477-491. DOI: 10.1007/s12012-022-09729-7.
|
[43] |
NITZ K, LACY M, ATZLER D. Amino acids and their metabolism in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2019, 39(3):319-330. DOI: 10.1161/ATVBAHA.118.311572.
|
[44] |
YANO J M, YU K, DONALDSON G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2):264-276. DOI: 10.1016/j.cell.2015.02.047.
|
[45] |
VILLALÓN C M, CENTURIÓN D. Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications[J]. Naunyn Schmiedebergs Arch Pharmacol, 2007, 376(1/2):45-63. DOI: 10.1007/s00210-007-0179-1.
|
[46] |
ZHANG N. The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular physiology[J]. J Cardiovasc Dis Res, 2011, 2(2):91-95. DOI: 10.4103/0975-3583.83033.
|
[47] |
HUC T, NOWINSKI A, DRAPALA A, et al. Indole and indoxyl sulfate,gut bacteria metabolites of tryptophan,change arterial blood pressure via peripheral and central mechanisms in rats[J]. Pharmacol Res, 2018, 130:172-179. DOI: 10.1016/j.phrs.2017.12.025.
|
[48] |
KONOPELSKI P, CHABOWSKI D, ALEKSANDROWICZ M, et al. Indole-3-propionic acid,a tryptophan-derived bacterial metabolite,increases blood pressure via cardiac and vascular mechanisms in rats[J]. Am J Physiol Regul Integr Comp Physiol, 2021, 321(6):R969-981. DOI: 10.1152/ajpregu.00142.2021.
|
[49] |
GESPER M, NONNAST A B H, KUMOWSKI N, et al. Gut-derived metabolite indole-3-propionic acid modulates mitochondrial function in cardiomyocytes and alters cardiac function[J]. Front Med (Lausanne), 2021, 8:648259. DOI: 10.3389/fmed.2021.648259.
|
[50] |
PULAKAZHI VENU V K, SAIFEDDINE M, MIHARA K, et al. The pregnane X receptor and its microbiota-derived ligand indole 3-propionic acid regulate endothelium-dependent vasodilation[J]. Am J Physiol Endocrinol Metab, 2019, 317(2):E350-361. DOI: 10.1152/ajpendo.00572.2018.
|
[51] |
DOU L, SALLÉE M, CERINI C, et al. The cardiovascular effect of the uremic solute indole-3 acetic acid[J]. J Am Soc Nephrol, 2015, 26(4):876-887. DOI: 10.1681/ASN.2013121283.
|
[52] |
KLEINEWIETFELD M, MANZEL A, TITZE J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells[J]. Nature, 2013, 496(7446):518-522. DOI: 10.1038/nature11868.
|
[53] |
SHAW M H, KAMADA N, KIM Y G, et al. Microbiota-induced IL-1β,but not IL-6,is critical for the development of steady-state TH17 cells in the intestine[J]. J Exp Med, 2012, 209(2):251-258. DOI: 10.1084/jem.20111703.
|
[54] |
IVANOV I I, FRUTOS R D E L, MANEL N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine[J]. Cell Host Microbe, 2008, 4(4):337-349. DOI: 10.1016/j.chom.2008.09.009.
|