[1] |
BROOME C V, FACKLAM R R, FRASER D W. Pneumococcal disease after pneumococcal vaccination:an alternative method to estimate the efficacy of pneumococcal vaccine[J]. N Engl J Med, 1980, 303(10):549-552. DOI: 10.1056/NEJM198009043031003.
|
[2] |
DE SERRES G, SKOWRONSKI D M, WU X W, et al. The test-negative design:validity,accuracy and precision of vaccine efficacy estimates compared to the gold standard of randomised placebo-controlled clinical trials[J]. Euro Surveill, 2013, 18(37):20585. DOI: 10.2807/1560-7917.es2013.18.37.20585.
|
[3] |
OZASA K, FUKUSHIMA W. Commentary:test-negative design reduces confounding by healthcare-seeking attitude in case-control studies[J]. J Epidemiol, 2019, 29(8):279-281. DOI: 10.2188/jea.JE20180177.
|
[4] |
SUGAYA N, SHINJOH M, NAKATA Y, et al. Three-season effectiveness of inactivated influenza vaccine in preventing influenza illness and hospitalization in children in Japan,2013-2016[J]. Vaccine, 2018, 36(8):1063-1071. DOI: 10.1016/j.vaccine.2018.01.024.
|
[5] |
RANZANI O T, SILVA A A B, PERES I T, et al. Vaccine effectiveness of ChAdOx1 nCoV-19 against COVID-19 in a socially vulnerable community in Rio de Janeiro,Brazil:a test-negative design study[J]. Clin Microbiol Infect, 2022, 28(5):736.e1-736.e4. DOI: 10.1016/j.cmi.2022.01.032.
|
[6] |
MCLAUGHLIN J M, JIANG Q, ISTURIZ R E, et al. Effectiveness of 13-valent pneumococcal conjugate vaccine against hospitalization for community-acquired pneumonia in older US adults:a test-negative design[J]. Clin Infect Dis, 2018, 67(10):1498-1506. DOI: 10.1093/cid/ciy312.
|
[7] |
ARAKI K, HARA M, SHIMANOE C, et al. Case-control study of Rotavirus vaccine effectiveness compared to test-negative controls or hospital controls[J]. J Epidemiol, 2019, 29(8):282-287. DOI: 10.2188/jea.JE20180054.
|
[8] |
ALI M, YOU Y A, SUR D, et al. Validity of the estimates of oral cholera vaccine effectiveness derived from the test-negative design[J]. Vaccine, 2016, 34(4):479-485. DOI: 10.1016/j.vaccine.2015.12.004.
|
[9] |
MAHAMUD A, KAMADJEU R, WEBECK J, et al. Effectiveness of oral polio vaccination against paralytic poliomyelitis:a matched case-control study in Somalia[J]. J Infect Dis, 2014, 210(Suppl 1):S187-193. DOI: 10.1093/infdis/jiu261.
|
[10] |
JOHNSON JONES M L, GARGANO J W, POWELL M, et al. Effectiveness of 1,2,and 3 doses of human papillomavirus vaccine against high-grade cervical lesions positive for human papillomavirus 16 or 18[J]. Am J Epidemiol, 2020, 189(4):265-276. DOI: 10.1093/aje/kwz253.
|
[11] |
LI Y, ZHOU Y, CHENG Y, et al. Effectiveness of EV-A71 vaccination in prevention of paediatric hand,foot,and mouth disease associated with EV-A71 virus infection requiring hospitalisation in Henan,China,2017-18:a test-negative case-control study[J]. The Lancet Child & Adolescent Health, 2019, 3(10):697-704. DOI: 10.1016/S2352-4642(19)30185-3.
|
[12] |
CHADEAU-HYAM M, BODINIER B, ELLIOTT J, et al. Risk factors for positive and negative COVID-19 tests:a cautious and in-depth analysis of UK biobank data[J]. Int J Epidemiol, 2020, 49(5):1454-1467. DOI: 10.1093/ije/dyaa134.
|
[13] |
LIPSITCH M. Measuring and interpreting associations between antibiotic use and penicillin resistance in Streptococcus pneumoniae[J]. Clin Infec Dis, 2001, 32(7):1044-1054. DOI: 10.1086/319604.
|
[14] |
BLOEMENKAMP K W M, ROSENDAAL F R, BüLLER H R, et al. Risk of venous thrombosis with use of current low-dose oral contraceptives is not explained by diagnostic suspicion and referral bias [J]. Archives of Internal Medicine, 1999, 159(1):65. DOI: 10.1001/archinte.159.1.65.
|
[15] |
VANDENBROUCKE J P, PEARCE N. Test-negative designs:differences and commonalities with other case-control studies with "other patient" controls[J]. Epidemiology, 2019, 30(6):838-844. DOI: 10.1097/EDE.0000000000001088.
|
[16] |
JACKSON M L, NELSON J C. The test-negative design for estimating influenza vaccine effectiveness[J]. Vaccine, 2013, 31(17):2165-2168. DOI: 10.1016/j.vaccine.2013.02.053.
|
[17] |
SULLIVAN S G, TCHETGEN TCHETGEN E J, COWLING B J. Theoretical basis of the test-negative study design for assessment of influenza vaccine effectiveness[J]. Am J Epidemiol, 2016, 184(5):345-353. DOI: 10.1093/aje/kww064.
|
[18] |
FUKUSHIMA W, HIROTA Y. Basic principles of test-negative design in evaluating influenza vaccine effectiveness[J]. Vaccine, 2017, 35(36):4796-4800. DOI: 10.1016/j.vaccine.2017.07.003.
|
[19] |
|
[20] |
SULLIVAN S G, FENG S, COWLING B J. Potential of the test-negative design for measuring influenza vaccine effectiveness:a systematic review[J]. Expert Rev Vaccines, 2014, 13(12):1571-1591. DOI: 10.1586/14760584.2014.966695.
|
[21] |
JACKSON M L, ROTHMAN K J. Effects of imperfect test sensitivity and specificity on observational studies of influenza vaccine effectiveness[J]. Vaccine, 2015, 33(11):1313-1316. DOI: 10.1016/j.vaccine.2015.01.069.
|
[22] |
ORENSTEIN E W, DE SERRES G, HABER M J, et al. Methodologic issues regarding the use of three observational study designs to assess influenza vaccine effectiveness[J]. Int J Epidemiol, 2007, 36(3):623-631. DOI: 10.1093/ije/dym021.
|
[23] |
YU S T, THI BUI C, KIM D T H, et al. Clinical evaluation of rapid fluorescent diagnostic immunochromatographic test for influenza A virus (H1N1)[J]. Sci Rep, 2018, 8(1):13468. DOI: 10.1038/s41598-018-31786-8.
|
[24] |
MERCKX J, WALI R, SCHILLER I, et al. Diagnostic accuracy of novel and traditional rapid tests for influenza infection compared with reverse transcriptase polymerase chain reaction:a systematic review and meta-analysis[J]. Ann Intern Med, 2017, 167(6):394-409. DOI: 10.7326/M17-0848.
|
[25] |
HIROTA Y, KAJI M. Principles and methods of influenza epidemiology:with special reference to field evaluation of vaccine efficacy[J]. Kansenshogaku Zasshi, 1994, 68(11):1293-1305. DOI: 10.11150/kansenshogakuzasshi1970.68.1293.
|
[26] |
FELDSTEIN L R, SELF W H, FERDINANDS J M, et al. Incorporating real-time influenza detection into the test-negative design for estimating influenza vaccine effectiveness:the real-time test-negative design (rtTND)[J]. Clin Infect Dis, 2021, 72(9):1669-1675. DOI: 10.1093/cid/ciaa1453.
|
[27] |
JEWELL N P, DUFAULT S, CUTCHER Z, et al. Analysis of cluster-randomized test-negative designs:cluster-level methods[J]. Biostatistics, 2019, 20(2):332-346. DOI: 10.1093/biostatistics/kxy005.
|
[28] |
ANDERS K L, CUTCHER Z, KLEINSCHMIDT I, et al. Cluster-randomized test-negative design trials:a novel and efficient method to assess the efficacy of community-level dengue interventions[J]. Am J Epidemiol, 2018, 187(9):2021-2028. DOI: 10.1093/aje/kwy099.
|
[29] |
DEAN N E, HOGAN J W, SCHNITZER M E. COVID-19 vaccine effectiveness and the test-negative design[J]. N Engl J Med, 2021, 385(15):1431-1433. DOI: 10.1056/NEJMe2113151.
|
[30] |
KELLY H, JACOBY P, DIXON G A, et al. Vaccine effectiveness against laboratory-confirmed influenza in healthy young children:a case-control study[J]. Pediatr Infect Dis J, 2011, 30(2):107-111. DOI: 10.1097/INF.0b013e318201811c.
|
[31] |
NUNES B, MACHADO A, GUIOMAR R, et al. Estimates of 2012/13 influenza vaccine effectiveness using the case test-negative control design with different influenza negative control groups[J]. Vaccine, 2014, 32(35):4443-4449. DOI: 10.1016/j.vaccine.2014.06.053.
|
[32] |
SUZUKI M, MINH L E N, YOSHIMINE H, et al. Vaccine effectiveness against medically attended laboratory-confirmed influenza in Japan,2011-2012 Season[J]. PLoS One, 2014, 9(2):e88813. DOI: 10.1371/journal.pone.0088813.
|
[33] |
COWLING B J, NISHIURA H. Virus interference and estimates of influenza vaccine effectiveness from test-negative studies[J]. Epidemiology, 2012, 23(6):930-931. DOI: 10.1097/EDE.0b013e31826b300e.
|
[34] |
BLYTH C C, JACOBY P, EFFLER P V, et al. Effectiveness of trivalent flu vaccine in healthy young children[J]. Pediatrics, 2014, 133(5):e1218-e1225. DOI: 10.1542/peds.2013-3707.
|
[35] |
SUNDARAM M E, MCCLURE D L, VANWORMER J J, et al. Influenza vaccination is not associated with detection of noninfluenza respiratory viruses in seasonal studies of influenza vaccine effectiveness[J]. Clin Infect Dis, 2013, 57(6):789-793. DOI: 10.1093/cid/cit379.
|
[36] |
AINSLIE K E C, SHI M, HABER M, et al. On the bias of estimates of influenza vaccine effectiveness from test-negative studies[J]. Vaccine, 2017, 35(52):7297-7301. DOI: 10.1016/j.vaccine.2017.10.107.
|
[37] |
RID A, SAXENA A, BAQUI A H, et al. Placebo use in vaccine trials:recommendations of a WHO expert panel[J]. Vaccine, 2014, 32(37):4708-4712. DOI: 10.1016/j.vaccine.2014.04.022.
|
[38] |
BELONGIA E A, SIMPSON M D, KING J P, et al. Variable influenza vaccine effectiveness by subtype:a systematic review and meta-analysis of test-negative design studies[J]. Lancet Infect Dis, 2016, 16(8):942-951. DOI: 10.1016/S1473-3099(16)00129-8.
|
[39] |
WU S S, PAN Y, ZHANG X X, et al. Influenza vaccine effectiveness in preventing laboratory-confirmed influenza in outpatient settings:a test-negative case-control study in Beijing,China,2016/17 season[J]. Vaccine, 2018, 36(38):5774-5780. DOI: 10.1016/j.vaccine.2018.07.077.
|
[40] |
VASILEIOU E, SHEIKH A, BUTLER C C, et al. Seasonal influenza vaccine effectiveness in people with asthma:a national test-negative design case-control study[J]. Clin Infect Dis, 2020, 71(7):e94-104. DOI: 10.1093/cid/ciz1086.
|
[41] |
OKOLI G N, RACOVITAN F, RIGHOLT C H, et al. Variations in seasonal influenza vaccine effectiveness due to study characteristics:a systematic review and meta-analysis of test-negative design studies[J]. Open Forum Infect Dis, 2020, 7(7):ofaa177. DOI: 10.1093/ofid/ofaa177.
|
[42] |
RONDY M, EL OMEIRI N, THOMPSON M G, et al. Effectiveness of influenza vaccines in preventing severe influenza illness among adults:a systematic review and meta-analysis of test-negative design case-control studies[J]. J Infect, 2017, 75(5):381-394. DOI: 10.1016/j.jinf.2017.09.010.
|
[43] |
DARVISHIAN M, BIJLSMA M J, HAK E, et al. Effectiveness of seasonal influenza vaccine in community-dwelling elderly people:a meta-analysis of test-negative design case-control studies[J]. Lancet Infect Dis, 2014, 14(12):1228-1239. DOI: 10.1016/S1473-3099(14)70960-0.
|
[44] |
PEBODY R, WARBURTON F, ELLIS J, et al. Effectiveness of seasonal influenza vaccine for adults and children in preventing laboratory-confirmed influenza in primary care in the United Kingdom:2015/16 end-of-season results[J]. Eur Commun Dis Bull, 2016, 21(38):30348. DOI: 10.2807/1560-7917.ES.2016.21.38.30348.
|
[45] |
CHUA H, FENG S, LEWNARD J A, et al. The use of test-negative controls to monitor vaccine effectiveness:a systematic review of methodology[J]. Epidemiology, 2020, 31(1):43-64. DOI: 10.1097/EDE.0000000000001116.
|
[46] |
UTARINI A, INDRIANI C, AHMAD R A, et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue[J]. N Engl J Med, 2021, 384(23):2177-2186. DOI: 10.1056/NEJMoa2030243.
|
[47] |
VASILEIOU E, SHEIKH A, BUTLER C, et al. Effectiveness of influenza vaccines in asthma:a systematic review and meta-analysis[J]. Clin Infect Dis, 2017, 65(8):1388-1395. DOI: 10.1093/cid/cix524.
|
[48] |
ZIMMERMAN R K, NOWALK M P, CHUNG J, et al. 2014-2015 influenza vaccine effectiveness in the United States by vaccine type[J]. Clin Infect Dis, 2016, 63(12):1564-1573. DOI: 10.1093/cid/ciw635.
|
[49] |
SKOWRONSKI D M, JANJUA N Z, DE SERRES G, et al. Interim estimates of influenza vaccine effectiveness in 2012/13 from Canada's sentinel surveillance network,January 2013[J]. Euro Surveill, 2013, 18(5):20394. DOI: 10.2807/ese.18.05.20394-en.
|
[50] |
DARVISHIAN M, DIJKSTRA F, VAN DOORN E, et al. Influenza vaccine effectiveness in the Netherlands from 2003/2004 through 2013/2014:the importance of circulating influenza virus types and subtypes[J]. PLoS One, 2017, 12(1):e0169528. DOI: 10.1371/journal.pone.0169528.
|
[51] |
CARVILLE K S, GRANT K A, SULLIVAN S G, et al. Understanding influenza vaccine protection in the community:an assessment of the 2013 influenza season in Victoria,Australia[J]. Vaccine, 2015, 33(2):341-345. DOI: 10.1016/j.vaccine.2014.11.019.
|
[52] |
World Health Organization.The COVID-19 vaccine tracker and landscape compiles detailed information of each COVID-19 vaccine candidate in development by closely monitoring their progress through the pipeline[EB/OL]. (2021-12-10)[2021-12-13].
|
[53] |
World Health Organization. 8 Vaccines Approved for Use by WHO[EB/OL]. (2021-12-10)[2021-12-13].
|
[54] |
THOMPSON M G, STENEHJEM E, GRANNIS S, et al. Effectiveness of COVID-19 vaccines in ambulatory and inpatient care settings[J]. N Engl J Med, 2021, 385(15):1355-1371. DOI: 10.1056/NEJMoa2110362.
|
[55] |
KIM S S, CHUNG J R, BELONGIA E A, et al. mRNA vaccine effectiveness against COVID-19 among symptomatic outpatients aged ≥16 years in the United States,February - may 2021[J]. J Infect Dis, 2021:jiab451. DOI: 10.1093/infdis/jiab451.
|
[56] |
SKOWRONSKI D M, SETAYESHGAR S, ZOU M, et al. Single-dose mRNA vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),including alpha and gamma variants:a test-negative design in adults 70 years and older in British Columbia,Canada[J]. Clin Infect Dis, 2022, 74(7):1158-1165. DOI: 10.1093/cid/ciab616.
|
[57] |
LOPEZ BERNAL J, ANDREWS N, GOWER C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms,hospital admissions,and mortality in older adults in England:test negative case-control study[J]. BMJ, 2021, 373:n1088. DOI: 10.1136/bmj.n1088.
|
[58] |
CHUNG H, HE S Y, NASREEN S, et al. Effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario,Canada:test negative design study[J]. BMJ, 2021, 374:n1943. DOI: 10.1136/bmj.n1943.
|
[59] |
RANZANI O T, HITCHINGS M D T, DORION M, et al. Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of COVID-19 in Brazil:test negative case-control study[J]. BMJ, 2021, 374:n2015. DOI: 10.1136/bmj.n2015.
|
[60] |
LOPEZ BERNAL J, ANDREWS N, GOWER C, et al. Effectiveness of COVID-19 vaccines against the B.1.617.2(delta) variant[J]. N Engl J Med, 2021, 385(7):585-594. DOI: 10.1056/NEJMoa2108891.
|
[61] |
STOWE J, TESSIER E, ZHAO H, et al. Interactions between SARS-CoV-2 and influenza,and the impact of coinfection on disease severity:a test-negative design[J]. Int J Epidemiol, 2021, 50(4):1124-1133. DOI: 10.1093/ije/dyab081.
|
[62] |
SIMMONS C P, FARRAR J J, VAN VINH CHAU N, et al. Dengue[J]. N Engl J Med, 2012, 366(15):1423-1432. DOI: 10.1056/nejmra1110265.
|
[63] |
BOWMAN L R, DONEGAN S, MCCALL P J. Is dengue vector control deficient in effectiveness or evidence? Systematic review and meta-analysis[J]. PLoS Negl Trop Dis, 2016, 10(3):e0004551. DOI: 10.1371/journal.pntd.0004551.
|
[64] |
|
[65] |
杨孝坤. 我国流感疫苗保护效果评价[R]. 北京:中国疾病预防控制中心,2021.
|
[66] |
WU S S, PAN Y, ZHANG X X, et al. Influenza vaccine effectiveness in preventing laboratory-confirmed influenza in outpatient settings:a test-negative case-control study in Beijing,China,2016/17 season[J]. Vaccine, 2018, 36(38):5774-5780. DOI: 10.1016/j.vaccine.2018.07.077.
|
[67] |
ZHANG L, WEI M W, JIN P F, et al. An evaluation of a test-negative design for EV-71 vaccine from a randomized controlled trial[J]. Hum Vaccin Immunother, 2021, 17(7):2101-2106. DOI: 10.1080/21645515.2020.1859900.
|
[68] |
|
[69] |
|
[70] |
|