[1] |
GAO Q W, LIANG X W, SHAIKH A S,et al. JAK/STAT signal transduction:promising attractive targets for immune,inflammatory and hematopoietic diseases[J]. Curr Drug Targets, 2018, 19(5):487-500. DOI: 10.2174/1389450117666161207163054.
|
[2] |
XIN P, XU X Y, DENG C J,et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases[J]. Int Immunopharmacol, 2020, 80:106210. DOI: 10.1016/j.intimp.2020.106210.
|
[3] |
GLADMAN D, RIGBY W, AZEVEDO V F,et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors[J]. N Engl J Med, 2017, 377(16):1525-1536. DOI: 10.1056/NEJMoa1615977.
|
[4] |
VAN DER HEIJDE D, DEODHAR A, WEI J C,et al. Tofacitinib in patients with ankylosing spondylitis:a phaseⅡ,16-week,randomised,placebo-controlled,dose-ranging study[J]. Ann Rheum Dis, 2017, 76(8):1340-1347. DOI: 10.1136/annrheumdis-2016-210322.
|
[5] |
VAN DER HEIJDE D, BARALIAKOS X, GENSLER L S,et al. Efficacy and safety of filgotinib,a selective Janus kinase 1 inhibitor,in patients with active ankylosing spondylitis(TORTUGA):results from a randomised,placebo-controlled,phase 2 trial[J]. Lancet, 2018, 392(10162):2378-2387. DOI: 10.1016/S0140-6736(18)32463-2.
|
[6] |
VAN DER HEIJDE D, SONG I H, PANGAN A L,et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis(SELECT-AXIS 1):a multicentre,randomised,double-blind,placebo-controlled,phase 2/3 trial[J]. Lancet, 2019, 394(10214):2108-2117. DOI: 10.1016/S0140-6736(19)32534-6.
|
[7] |
O'SHEA J J, SCHWARTZ D M, VILLARINO A V,et al. The JAK-STAT pathway:impact on human disease and therapeutic intervention[J]. Annu Rev Med, 2015, 66:311-328. DOI: 10.1146/annurev-med-051113-024537.
|
[8] |
OWEN K L, BROCKWELL N K, PARKER B S. JAK-STAT signaling:a double-edged sword of immune regulation and cancer progression[J]. Cancers, 2019, 11(12):2002. DOI: 10.3390/cancers11122002.
|
[9] |
HAMMARÉN H M, VIRTANEN A T, RAIVOLA J,et al. The regulation of JAKs in cytokine signaling and its breakdown in disease[J]. Cytokine, 2019, 118:48-63. DOI: 10.1016/j.cyto.2018.03.041.
|
[10] |
MALEMUD C J. The role of the JAK/STAT signal pathway in rheumatoid arthritis[J]. Ther Adv Musculoskelet Dis, 2018, 10(5/6):117-127. DOI: 10.1177/1759720X18776224.
|
[11] |
SCHETT G, EMERY P, TANAKA Y,et al. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis:current evidence and future directions[J]. Ann Rheum Dis, 2016, 75(8):1428-1437. DOI: 10.1136/annrheumdis-2016-209201.
|
[12] |
YOU H X, XU D, ZHAO J L,et al. JAK inhibitors:prospects in connective tissue diseases[J]. Clin Rev Allergy Immunol, 2020, 59(3):334-351. DOI: 10.1007/s12016-020-08786-6.
|
[13] |
ZHANG A, LEE Y C. Mechanisms for joint pain in rheumatoid arthritis(RA):from cytokines to central sensitization[J]. Curr Osteoporos Rep, 2018, 16(5):603-610. DOI: 10.1007/s11914-018-0473-5.
|
[14] |
BOYDEN S D, HOSSAIN I N, WOHLFAHRT A,et al. Non-inflammatory causes of pain in patients with rheumatoid arthritis[J]. Curr Rheumatol Rep, 2016, 18(6):30. DOI: 10.1007/s11926-016-0581-0.
|
[15] |
BARAL P, UDIT S, CHIU I M. Pain and immunity:implications for host defence[J]. Nat Rev Immunol, 2019, 19(7):433-447. DOI: 10.1038/s41577-019-0147-2.
|
[16] |
TAYLOR P C, KEYSTONE E C, VAN DER HEIJDE D,et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis[J]. N Engl J Med, 2017, 376(7):652-662. DOI: 10.1056/nejmoa1608345.
|
[17] |
CECCHINATO V, D'AGOSTINO G, RAELI L,et al. Redox-mediated mechanisms fuel monocyte responses to CXCL12/HMGB1 in active rheumatoid arthritis[J]. Front Immunol, 2018, 9:2118. DOI: 10.3389/fimmu.2018.02118.
|
[18] |
WALLACE D J, FURIE R A, TANAKA Y,et al. Baricitinib for systemic lupus erythematosus:a double-blind,randomised,placebo-controlled,phase 2 trial[J]. Lancet, 2018, 392(10143):222-231. DOI: 10.1016/S0140-6736(18)31363-1.
|
[19] |
LI Y P, HIGGS R E, HOFFMAN R W,et al. A Bayesian gene network reveals insight into the JAK-STAT pathway in systemic lupus erythematosus[J]. PLoS One, 2019, 14(12):e0225651. DOI: 10.1371/journal.pone.0225651.
|
[20] |
SHAO W H, SHU D H, ZHEN Y X,et al. Prion-like aggregation of mitochondrial antiviral signaling protein in lupus patients is associated with increased levels of type Ⅰ interferon[J]. Arthritis Rheumatol, 2016, 68(11):2697-2707. DOI: 10.1002/art.39733.
|
[21] |
ALUNNO A, PADJEN I, FANOURIAKIS A,et al. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus:integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent[J]. Cells, 2019, 8(8):E898. DOI: 10.3390/cells8080898.
|
[22] |
|
[23] |
SUN Y, ABBONDANTE S, KARMAKAR M,et al. Neutrophil caspase-11 is required for cleavage of caspase-1 and secretion of IL-1β in Aspergillus fumigatus infection[J]. J Immunol, 2018, 201(9):2767-2775. DOI: 10.4049/jimmunol.1701195.
|
[24] |
WINKLER S, RÖSEN-WOLFF A. Caspase-1:an integral regulator of innate immunity[J]. Semin Immunopathol, 2015, 37(4):419-427. DOI: 10.1007/s00281-015-0494-4.
|
[25] |
TEMMOKU J, FUJITA Y, MATSUOKA N,et al. Uric acid-mediated inflammasome activation in IL-6 primed innate immune cells is regulated by baricitinib[J]. Mod Rheumatol, 2021, 31(1):270-275. DOI: 10.1080/14397595.2020.1740410.
|
[26] |
FRANCHIMONT N, WERTZ S, MALAISE M. Interleukin-6:an osteotropic factor influencing bone formation? [J]. Bone, 2005, 37(5):601-606. DOI: 10.1016/j.bone.2005.06.002.
|
[27] |
CHEON Y H, KIM J Y, BAEK J M,et al. WHI-131 promotes osteoblast differentiation and prevents osteoclast formation and resorption in mice[J]. J Bone Miner Res, 2016, 31(2):403-415. DOI: 10.1002/jbmr.2612.
|
[28] |
XU L J, ZHANG L X, ZHANG H J,et al. The participation of fibroblast growth factor 23(FGF23)in the progression of osteoporosis via JAK/STAT pathway[J]. J Cell Biochem, 2018, 119(5):3819-3828. DOI: 10.1002/jcb.26332.
|
[29] |
DALAGIORGOU G, PIPERI C, ADAMOPOULOS C,et al. Mechanosensor polycystin-1 potentiates differentiation of human osteoblastic cells by upregulating Runx2 expression via induction of JAK2/STAT3 signaling axis[J]. Cell Mol Life Sci, 2017, 74(5):921-936. DOI: 10.1007/s00018-016-2394-8.
|
[30] |
JETHWA H, BOWNESS P. The interleukin(IL)-23/IL-17 axis in ankylosing spondylitis:new advances and potentials for treatment[J]. Clin Exp Immunol, 2016, 183(1):30-36. DOI: 10.1111/cei.12670.
|
[31] |
DAVIDSON S I, LIU Y, DANOY P A,et al. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese[J]. Ann Rheum Dis, 2011, 70(2):289-292. DOI: 10.1136/ard.2010.133322.
|
[32] |
VEALE D J, MCGONAGLE D, MCINNES I B,et al. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis[J]. Rheumatology(Oxford), 2019, 58(2):197-205. DOI: 10.1093/rheumatology/key070.
|
[33] |
MARIETTE X, CRISWELL L A. Primary Sjögren's syndrome[J]. N Engl J Med, 2018, 378(10):931-939. DOI: 10.1056/nejmcp1702514.
|
[34] |
CHARRAS A, ARVANITI P, LE DANTEC C,et al. JAK inhibitors suppress innate epigenetic reprogramming:a promise for patients with Sjögren's syndrome[J]. Clin Rev Allergy Immunol, 2020, 58(2):182-193. DOI: 10.1007/s12016-019-08743-y.
|
[35] |
GASPARINI G, COZZANI E, PARODI A. Interleukin-4 and interleukin-13 as possible therapeutic targets in systemic sclerosis[J]. Cytokine, 2020, 125:154799. DOI: 10.1016/j.cyto.2019.154799.
|
[36] |
HIGASHIOKA K, KIKUSHIGE Y, AYANO M,et al. Generation of a novel CD 30+ B cell subset producing GM-CSF and its possible link to the pathogenesis of systemic sclerosis[J]. Clin Exp Immunol, 2020, 201(3):233-243. DOI: 10.1111/cei.13477.
|
[37] |
KITANAGA Y, IMAMURA E, NAKAHARA Y,et al. In vitro pharmacological effects of peficitinib on lymphocyte activation:a potential treatment for systemic sclerosis with JAK inhibitors[J]. Rheumatology(Oxford), 2020, 59(8):1957-1968. DOI: 10.1093/rheumatology/kez526.
|