[1] |
CARDOSO-SILVA D, DELBUE D, ITZLINGER A,et al. Intestinal barrier function in gluten-related disorders[J]. Nutrients, 2019, 11(10):E2325. DOI: 10.3390/nu11102325.
|
[2] |
O'CONNOR G, JEFFREY E, MADORMA D,et al. Investigation of microbiota alterations and intestinal inflammation post-spinal cord injury in rat model[J]. J Neurotrauma, 2018, 35(18):2159-2166. DOI: 10.1089/neu.2017.5349.
|
[3] |
CHOI W, YERUVA S, TURNER J R. Contributions of intestinal epithelial barriers to health and disease[J]. Exp Cell Res, 2017, 358(1):71-77. DOI: 10.1016/j.yexcr.2017.03.036.
|
[4] |
SCHUMANN M, SIEGMUND B, SCHULZKE J D,et al. Celiac disease:role of the epithelial barrier[J]. Cell Mol Gastroenterol Hepatol, 2017, 3(2):150-162. DOI: 10.1016/j.jcmgh.2016.12.006.
|
[5] |
MONTGOMERY T L, KÜNSTNER A, KENNEDY J J,et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity[J]. Proc Natl Acad Sci USA, 2020, 117(44):27516-27527. DOI: 10.1073/pnas.2002817117.
|
[6] |
WALTER J, BRITTON R A, ROOS S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm[J]. PNAS, 2011, 108(Suppl 1):4645-4652. DOI: 10.1073/pnas.1000099107.
|
[7] |
MU Q, TAVELLA V J, LUO X M. Role of Lactobacillus reuteri in human health and diseases[J]. Front Microbiol, 2018, 9:757. DOI: 10.3389/fmicb.2018.00757.
|
[8] |
KANDLER O, STETTER K O, KÖHL R. Lactobacillus reuteri sp. nov.,a new species of heterofermentative lactobacilli[J]. Zentralblatt Für Bakteriologie: I. Abt. Originale C: Allgemeine,Angewandte Und Ökologische Mikrobiologie, 1980, 1(3):264-269. DOI: 10.1016/S0172-5564(80)80007-8.
|
[9] |
GREIFOVÁ G, MÁJEKOVÁ H, GREIF G,et al. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri[J]. Folia Microbiol (Praha), 2017, 62(6):515-524. DOI: 10.1007/s12223-017-0524-9.
|
[10] |
PETERSON L W, ARTIS D. Intestinal epithelial cells:regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14(3):141-153. DOI: 10.1038/nri3608.
|
[11] |
LI L Z, FANG Z F, LIU X Y,et al. Lactobacillus reuteri attenuated allergic inflammation induced by HDM in the mouse and modulated gut microbes[J]. PLoS One, 2020, 15(4):e0231865. DOI: 10.1371/journal.pone.0231865.
|
[12] |
GU Q, ZHANG C, SONG D,et al. Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri[J]. Int J Food Microbiol, 2015, 206:56-59. DOI: 10.1016/j.ijfoodmicro.2015.04.033.
|
[13] |
WANG M J, WU H Q, LU L H,et al. Lactobacillus reuteri promotes intestinal development and regulates mucosal immune function in newborn piglets[J]. Front Vet Sci, 2020, 7:42. DOI: 10.3389/fvets.2020.00042.
|
[14] |
WANG G, HUANG S, CAI S,et al. Lactobacillus reuteri ameliorates intestinal inflammation and modulates gut microbiota and metabolic disorders in dextran sulfate sodium-induced colitis in mice[J]. Nutrients, 2020, 12(8):E2298. DOI: 10.3390/nu12082298.
|
[15] |
DROLIA R, BHUNIA A K. Crossing the intestinal barrier via Listeria adhesion protein and internalin A[J]. Trends Microbiol, 2019, 27(5):408-425. DOI: 10.1016/j.tim.2018.12.007.
|
[16] |
WU H, XIE S, MIAO J,et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa[J]. Gut Microbes, 2020, 11(4):997-1014. DOI: 10.1080/19490976.2020.1734423.
|
[17] |
HOU Q, YE L, LIU H,et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death Differ, 2018, 25(9):1657-1670. DOI: 10.1038/s41418-018-0070-2.
|
[18] |
MORRISON D J, PRESTON T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3):189-200. DOI: 10.1080/19490976.2015.1134082.
|
[19] |
HE Q L, HAN C P, HUANG L,et al. Astragaloside IV alleviates mouse slow transit constipation by modulating gut microbiota profile and promoting butyric acid generation[J]. J Cell Mol Med, 2020, 24(16):9349-9361. DOI: 10.1111/jcmm.15586.
|
[20] |
YANG S, YU M. Role of goblet cells in intestinal barrier and mucosal immunity[J]. J Inflamm Res, 2021, 14:3171-3183. DOI: 10.2147/jir.s318327.
|
[21] |
NATIVIDAD J M, VERDU E F. Modulation of intestinal barrier by intestinal microbiota:pathological and therapeutic implications[J]. Pharmacol Res, 2013, 69(1):42-51. DOI: 10.1016/j.phrs.2012.10.007.
|
[22] |
XIE S, ZHAO S Y, JIANG L,et al. Lactobacillus reuteri stimulates intestinal epithelial proliferation and induces differentiation into goblet cells in young chickens[J]. J Agric Food Chem, 2019, 67(49):13758-13766. DOI: 10.1021/acs.jafc.9b06256.
|
[23] |
|
[24] |
MARTENS E C, NEUMANN M, DESAI M S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier[J]. Nat Rev Microbiol, 2018, 16(8):457-470. DOI: 10.1038/s41579-018-0036-x.
|
[25] |
XIE W, SONG L, WANG X,et al. A bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri CO21 regulates the intestinal mucosal immunity and enhances the protection of piglets against enterotoxigenic Escherichia coli K88 challenge[J]. Gut Microbes, 2021, 13(1):1956281. DOI: 10.1080/19490976.2021.1956281.
|
[26] |
HE B K, HOANG T K, TIAN X J,et al. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota[J]. Front Immunol, 2019, 10:385. DOI: 10.3389/fimmu.2019.00385.
|
[27] |
ANDRADE M E, ARAÚJO R S, DE BARROS P A,et al. The role of immunomodulators on intestinal barrier homeostasis in experimental models[J]. Clin Nutr, 2015, 34(6):1080-1087. DOI: 10.1016/j.clnu.2015.01.012.
|
[28] |
WANG P, LI Y, XIAO H,et al. Isolation of Lactobacillus reuteri from Peyer's patches and their effects on SIgA production and gut microbiota diversity[J]. Mol Nutr Food Res, 2016, 60(9):2020-2030. DOI: 10.1002/mnfr.201501065.
|
[29] |
GOMES A C, HOFFMANN C, MOTA J F. The human gut microbiota:metabolism and perspective in obesity[J]. Gut Microbes, 2018, 9(4):308-325. DOI: 10.1080/19490976.2018.1465157.
|
[30] |
MOWAT A M, AGACE W W. Regional specialization within the intestinal immune system[J]. Nat Rev Immunol, 2014, 14(10):667-685. DOI: 10.1038/nri3738.
|
[31] |
BACH KNUDSEN K E, LÆRKE H N, HEDEMANN M S,et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation[J]. Nutrients, 2018, 10(10):E1499. DOI: 10.3390/nu10101499.
|
[32] |
SINGH N, GURAV A, SIVAPRAKASAM S,et al. Activation of Gpr109a,receptor for niacin and the commensal metabolite butyrate,suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1):128-139. DOI: 10.1016/j.immuni.2013.12.007.
|
[33] |
CERVANTES-BARRAGAN L, CHAI J N, TIANERO M D,et al. Lactobacillus reuteri induces gut intraepithelial CD4 + CD8αα + T cells[J]. Science, 2017, 357(6353):806-810. DOI: 10.1126/science.aah5825.
|
[34] |
SERGEEV I N, ALJUTAILY T, WALTON G,et al. Effects of synbiotic supplement on human gut microbiota,body composition and weight loss in obesity[J]. Nutrients, 2020, 12(1):E222. DOI: 10.3390/nu12010222.
|
[35] |
WAN Y, WANG F L, YUAN J H,et al. Effects of dietary fat on gut microbiota and faecal metabolites,and their relationship with cardiometabolic risk factors:a 6-month randomised controlled-feeding trial[J]. Gut, 2019, 68(8):1417-1429. DOI: 10.1136/gutjnl-2018-317609.
|
[36] |
KIM C S, CHA L N, SIM M,et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults:a randomized,double-blind,placebo-controlled,multicenter trial[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(1):32-40. DOI: 10.1093/gerona/glaa090.
|