[1] |
国家国民体质监测中心. 第五次国民体质监测公报[EB/OL]. (2021-12-30)[2022-01-22].
|
[2] |
World Obesity Federation Global Obesity Observatory. Scorecards - Obesity:missing the 2025 targets[EB/OL]. [2022-01-22].
|
[3] |
LIN J D, WU P H, TARR P T,et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice[J]. Cell, 2004, 119(1):121-135. DOI: 10.1016/j.cell.2004.09.013.
|
[4] |
DYE L, BOYLE N B, CHAMP C,et al. The relationship between obesity and cognitive health and decline[J]. Proc Nutr Soc, 2017, 76(4):443-454. DOI: 10.1017/S0029665117002014.
|
[5] |
CRISPINO M, TRINCHESE G, PENNA E,et al. Interplay between peripheral and central inflammation in obesity-promoted disorders:the impact on synaptic mitochondrial functions[J]. Int J Mol Sci, 2020, 21(17):E5964. DOI: 10.3390/ijms21175964.
|
[6] |
SRIPETCHWANDEE J, CHATTIPAKORN N, CHATTIPAKORN S C. Links between obesity-induced brain insulin resistance,brain mitochondrial dysfunction,and dementia[J]. Front Endocrinol (Lausanne), 2018, 9:496. DOI: 10.3389/fendo.2018.00496.
|
[7] |
CAI Q, TAMMINENI P. Alterations in mitochondrial quality control in Alzheimer's disease[J]. Front Cell Neurosci, 2016, 10:24. DOI: 10.3389/fncel.2016.00024.
|
[8] |
RODRIGUEZ A L, WHITEHURST M, FICO B G,et al. Acute high-intensity interval exercise induces greater levels of serum brain-derived neurotrophic factor in obese individuals[J]. Exp Biol Med (Maywood), 2018, 243(14):1153-1160. DOI: 10.1177/1535370218812191.
|
[9] |
DOMÍNGUEZ-SANCHÉZ M A, BUSTOS-CRUZ R H, VELASCO-ORJUELA G P,et al. Acute effects of high intensity,resistance,or combined protocol on the increase of level of neurotrophic factors in physically inactive overweight adults:the BrainFit study[J]. Front Physiol, 2018, 9:741. DOI: 10.3389/fphys.2018.00741.
|
[10] |
KONOPKA A R, ASANTE A, LANZA I R,et al. Defects in mitochondrial efficiency and H 2O 2 emissions in obese women are restored to a lean phenotype with aerobic exercise training[J]. Diabetes, 2015, 64(6):2104-2115. DOI: 10.2337/db14-1701.
|
[11] |
LAHERA V, DE LAS HERAS N, LÓPEZ-FARRÉ A,et al. Role of mitochondrial dysfunction in hypertension and obesity[J]. Curr Hypertens Rep, 2017, 19(2):11. DOI: 10.1007/s11906-017-0710-9.
|
[12] |
DE MELLO A H, COSTA A B, ENGEL J D G,et al. Mitochondrial dysfunction in obesity[J]. Life Sci, 2018, 192:26-32. DOI: 10.1016/j.lfs.2017.11.019.
|
[13] |
CUNARRO J, CASADO S, LUGILDE J,et al. Hypothalamic mitochondrial dysfunction as a target in obesity and metabolic disease[J]. Front Endocrinol (Lausanne), 2018, 9:283. DOI: 10.3389/fendo.2018.00283.
|
[14] |
MARKHAM A, BAINS R, FRANKLIN P,et al. Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders:how important is BDNF?[J]. Br J Pharmacol, 2014, 171(8):2206-2229. DOI: 10.1111/bph.12531.
|
[15] |
WANG D M, YAN J Q, CHEN J,et al. Naringin improves neuronal insulin signaling,brain mitochondrial function,and cognitive function in high-fat diet-induced obese mice[J]. Cell Mol Neurobiol, 2015, 35(7):1061-1071. DOI: 10.1007/s10571-015-0201-y.
|
[16] |
SA-NGUANMOO P, TANAJAK P, KERDPHOO S,et al. FGF21 improves cognition by restored synaptic plasticity,dendritic spine density,brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats[J]. Horm Behav, 2016, 85:86-95. DOI: 10.1016/j.yhbeh.2016.08.006.
|
[17] |
HO L, VARGHESE M, WANG J,et al. Dietary supplementation with decaffeinated green coffee improves diet-induced insulin resistance and brain energy metabolism in mice[J]. Nutr Neurosci, 2012, 15(1):37-45. DOI: 10.1179/1476830511Y.0000000027.
|
[18] |
PATTI M E, CORVERA S. The role of mitochondria in the pathogenesis of type 2 diabetes[J]. Endocr Rev, 2010, 31(3):364-395. DOI: 10.1210/er.2009-0027.
|
[19] |
YAMASHIMA T, OTA T, MIZUKOSHI E,et al. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases[J]. Adv Nutr, 2020, 11(6):1489-1509. DOI: 10.1093/advances/nmaa072.
|
[20] |
LEE S, KIM J Y, KIM E,et al. Assessment of cognitive impairment in a mouse model of high-fat diet-induced metabolic stress with touchscreen-based automated battery system[J]. Exp Neurobiol, 2018, 27(4):277-286. DOI: 10.5607/en.2018.27.4.277.
|
[21] |
XU L, XU S, LIN L F,et al. High-fat diet mediates anxiolytic-like behaviors in a time-dependent manner through the regulation of SIRT1 in the brain[J]. Neuroscience, 2018, 372:237-245. DOI: 10.1016/j.neuroscience.2018.01.001.
|
[22] |
YANG J L, LIU D X, JIANG H,et al. The effects of high-fat-diet combined with chronic unpredictable mild stress on depression-like behavior and leptin/LepRb in male rats[J]. Sci Rep, 2016, 6:35239. DOI: 10.1038/srep35239.
|
[23] |
CHOI J M, LEE S I, CHO E J. Effect of Vigna angularis on high-fat diet-induced memory and cognitive impairments[J]. J Med Food, 2020, 23(11):1155-1162. DOI: 10.1089/jmf.2019.4644.
|
[24] |
TUCSEK Z, TOTH P, TARANTINI S,et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction,neurovascular uncoupling,and cognitive decline in mice[J]. J Gerontol Ser A Biol Sci Med Sci, 2014, 69(11):1339-1352. DOI: 10.1093/gerona/glu080.
|
[25] |
MARQUES NETO S R, CASTIGLIONE R C, DA SILVA T C B,et al. Effects of high intensity interval training on neuro-cardiovascular dynamic changes and mitochondrial dysfunction induced by high-fat diet in rats[J]. PLoS One, 2020, 15(10):e0240060. DOI: 10.1371/journal.pone.0240060.
|
[26] |
PLUM L, SCHUBERT M, BRÜNING J C. The role of insulin receptor signaling in the brain[J]. Trends Endocrinol Metab, 2005, 16(2):59-65. DOI: 10.1016/j.tem.2005.01.008.
|
[27] |
KULLMANN S, KLEINRIDDERS A, SMALL D M,et al. Central nervous pathways of insulin action in the control of metabolism and food intake[J]. Lancet Diabetes Endocrinol, 2020, 8(6):524-534. DOI: 10.1016/S2213-8587(20)30113-3.
|
[28] |
KOTHARI V, LUO Y W, TORNABENE T,et al. High fat diet induces brain insulin resistance and cognitive impairment in mice[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2017, 1863(2):499-508. DOI: 10.1016/j.bbadis.2016.10.006.
|
[29] |
MACIEJCZYK M, ZEBROWSKA E, CHABOWSKI A. Insulin resistance and oxidative stress in the brain:what's new?[J]. Int J Mol Sci, 2019, 20(4):E874. DOI: 10.3390/ijms20040874.
|
[30] |
POMYTKIN I, PINELIS V. Brain insulin resistance:focus on insulin receptor-mitochondria interactions[J]. Life (Basel), 2021, 11(3):262. DOI: 10.3390/life11030262.
|
[31] |
PIPATPIBOON N, PRATCHAYASAKUL W, CHATTIPAKORN N,et al. PPARγ agonist improves neuronal insulin receptor function in Hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets[J]. Endocrinology, 2012, 153(1):329-338. DOI: 10.1210/en.2011-1502.
|
[32] |
BEIRAMI E, ORYAN S, SEYEDHOSSEINI TAMIJANI S M,et al. Intranasal insulin treatment restores cognitive deficits and insulin signaling impairment induced by repeated methamphetamine exposure[J]. J Cell Biochem, 2018, 119(2):2345-2355. DOI: 10.1002/jcb.26398.
|
[33] |
NEHA, KUMAR A, JAGGI A S,et al. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia[J]. Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(8):777-787. DOI: 10.1007/s00210-014-0990-4.
|
[34] |
KIM J D, YOON N A, JIN S,et al. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding[J]. Cell Metab, 2019, 30(5):952-962.e5. DOI: 10.1016/j.cmet.2019.08.010.
|
[35] |
|
[36] |
|
[37] |
KIM M J, YOON J H, RYU J H. Mitophagy:a balance regulator of NLRP3 inflammasome activation[J]. BMB Rep, 2016, 49(10):529-535. DOI: 10.5483/bmbrep.2016.49.10.115.
|
[38] |
PRIETO G A, SNIGDHA S, BAGLIETTO-VARGAS D,et al. Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1β in the aged Hippocampus[J]. PNAS, 2015, 112(36):E5078-5087. DOI: 10.1073/pnas.1514486112.
|
[39] |
TAN B L, NORHAIZAN M E. Effect of high-fat diets on oxidative stress,cellular inflammatory response and cognitive function[J]. Nutrients, 2019, 11(11):E2579. DOI: 10.3390/nu11112579.
|
[40] |
JASSIM A H, INMAN D M, MITCHELL C H. Crosstalk between dysfunctional mitochondria and inflammation in glaucomatous neurodegeneration[J]. Front Pharmacol, 2021, 12:699623. DOI: 10.3389/fphar.2021.699623.
|
[41] |
WILKINS H M, CARL S M, GREENLIEF A C S,et al. Bioenergetic dysfunction and inflammation in Alzheimer's disease:a possible connection[J]. Front Aging Neurosci, 2014, 6:311. DOI: 10.3389/fnagi.2014.00311.
|
[42] |
DAVIS C H O, KIM K Y, BUSHONG E A,et al. Transcellular degradation of axonal mitochondria[J]. Proc Natl Acad Sci U S A, 2014, 111(26):9633-9638. DOI: 10.1073/pnas.1404651111.
|
[43] |
LI F, LIU B B, CAI M,et al. Excessive endoplasmic Reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise[J]. Brain Res Bull, 2018, 140:52-59. DOI: 10.1016/j.brainresbull.2018.04.003.
|
[44] |
CAI M, WANG H, LI J J,et al. The signaling mechanisms of hippocampal endoplasmic Reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise[J]. Brain Behav Immun, 2016, 57:347-359. DOI: 10.1016/j.bbi.2016.05.010.
|
[45] |
CAI M, HU J Y, LIU B B,et al. The molecular mechanisms of excessive hippocampal endoplasmic Reticulum stress depressing cognition-related proteins expression and the regulatory effects of Nrf2[J]. Neuroscience, 2020, 431:152-165. DOI: 10.1016/j.neuroscience.2020.02.001.
|
[46] |
BHANDARY B, MARAHATTA A, KIM H R,et al. An involvement of oxidative stress in endoplasmic Reticulum stress and its associated diseases[J]. Int J Mol Sci, 2012, 14(1):434-456. DOI: 10.3390/ijms14010434.
|
[47] |
ARRUDA A P, PERS B M, PARLAKGÜL G,et al. Chronic enrichment of hepatic endoplasmic Reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity[J]. Nat Med, 2014, 20(12):1427-1435. DOI: 10.1038/nm.3735.
|
[48] |
BORYS J, MACIEJCZYK M, ANTONOWICZ B,et al. Glutathione metabolism,mitochondria activity,and nitrosative stress in patients treated for mandible fractures[J]. J Clin Med, 2019, 8(1):E127. DOI: 10.3390/jcm8010127.
|
[49] |
FREEMAN L R, ZHANG L, NAIR A,et al. Obesity increases cerebrocortical reactive oxygen species and impairs brain function[J]. Free Radic Biol Med, 2013, 56:226-233. DOI: 10.1016/j.freeradbiomed.2012.08.577.
|
[50] |
MORRISON C D, PISTELL P J, INGRAM D K,et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice:implications for decreased Nrf2 signaling[J]. J Neurochem, 2010, 114(6):1581-1589. DOI: 10.1111/j.1471-4159.2010.06865.x.
|
[51] |
MA W W, DING B J, WANG L J,et al. Involvement of nuclear related factor 2 signaling pathway in the brain of obese rats and obesity-resistant rats induced by high-fat diet[J]. J Med Food, 2016, 19(4):404-409. DOI: 10.1089/jmf.2015.3500.
|
[52] |
PINTANA H, SRIPETCHWANDEE J, SUPAKUL L,et al. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats[J]. Appl Physiol Nutr Metab, 2014, 39(12):1373-1379. DOI: 10.1139/apnm-2014-0255.
|
[53] |
CAMPBELL W W, KRAUS W E, POWELL K E,et al. High-intensity interval training for cardiometabolic disease prevention[J]. Med Sci Sports Exerc, 2019, 51(6):1220-1226. DOI: 10.1249/MSS.0000000000001934.
|
[54] |
DA SILVA M A R, BAPTISTA L C, NEVES R S,et al. The effects of concurrent training combining both resistance exercise and high-intensity interval training or moderate-intensity continuous training on metabolic syndrome[J]. Front Physiol, 2020, 11:572. DOI: 10.3389/fphys.2020.00572.
|
[55] |
VIANA R B, NAVES J P A, COSWIG V S,et al. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT)[J]. Br J Sports Med, 2019, 53(10):655-664. DOI: 10.1136/bjsports-2018-099928.
|
[56] |
WEWEGE M, VAN DEN BERG R, WARD R E,et al. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults:a systematic review and meta-analysis[J]. Obes Rev, 2017, 18(6):635-646. DOI: 10.1111/obr.12532.
|
[57] |
ROBINSON M M, LOWE V J, NAIR K S. Increased brain glucose uptake after 12 weeks of aerobic high-intensity interval training in young and older adults[J]. J Clin Endocrinol Metab, 2018, 103(1):221-227. DOI: 10.1210/jc.2017-01571.
|
[58] |
DRIGNY J, GREMEAUX V, DUPUY O,et al. Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients:a pilot study[J]. J Rehabil Med, 2014, 46(10):1050-1054. DOI: 10.2340/16501977-1905.
|
[59] |
BERNARDO T C, MARQUES-ALEIXO I, BELEZA J,et al. Physical exercise and brain mitochondrial fitness:the possible role against Alzheimer's disease[J]. Brain Pathol, 2016, 26(5):648-663. DOI: 10.1111/bpa.12403.
|
[60] |
GAN Z J, FU T T, KELLY D P,et al. Skeletal muscle mitochondrial remodeling in exercise and diseases[J]. Cell Res, 2018, 28(10):969-980. DOI: 10.1038/s41422-018-0078-7.
|
[61] |
LUCAS S J, COTTER J D, BRASSARD P,et al. High-intensity interval exercise and cerebrovascular health:curiosity,cause,and consequence[J]. J Cereb Blood Flow Metab, 2015, 35(6):902-911. DOI: 10.1038/jcbfm.2015.49.
|
[62] |
TAKIMOTO M, HAMADA T. Acute exercise increases brain region-specific expression of MCT1,MCT2,MCT4,GLUT1,and COX IV proteins[J]. J Appl Physiol (1985), 2014, 116(9):1238-1250. DOI: 10.1152/japplphysiol.01288.2013.
|
[63] |
GUSDON A M, CALLIO J, DISTEFANO G,et al. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice[J]. Exp Gerontol, 2017, 90:1-13. DOI: 10.1016/j.exger.2017.01.013.
|
[64] |
RAI S, CHOWDHURY A, RENIERS R L E P,et al. A pilot study to assess the effect of acute exercise on brain glutathione[J]. Free Radic Res, 2018, 52(1):57-69. DOI: 10.1080/10715762.2017.1411594.
|
[65] |
FREITAS D A, ROCHA-VIEIRA E, SOARES B A,et al. High intensity interval training modulates hippocampal oxidative stress,BDNF and inflammatory mediators in rats[J]. Physiol Behav, 2018, 184:6-11. DOI: 10.1016/j.physbeh.2017.10.027.
|
[66] |
MELO C S, ROCHA-VIEIRA E, FREITAS D A,et al. A single session of high-intensity interval exercise increases antioxidants defenses in the hippocampus of Wistar rats[J]. Physiol Behav, 2019, 211:112675. DOI: 10.1016/j.physbeh.2019.112675.
|
[67] |
FETER N, SPANEVELLO R M, SOARES M S P,et al. How does physical activity and different models of exercise training affect oxidative parameters and memory?[J]. Physiol Behav, 2019, 201:42-52. DOI: 10.1016/j.physbeh.2018.12.002.
|
[68] |
LI B X, LIANG F, DING X Y,et al. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics[J]. Behav Brain Res, 2019, 376:112171. DOI: 10.1016/j.bbr.2019.112171.
|
[69] |
HU J Y, CAI M, SHANG Q H,et al. Elevated lactate by high-intensity interval training regulates the hippocampal BDNF expression and the mitochondrial quality control system[J]. Front Physiol, 2021, 12:629914. DOI: 10.3389/fphys.2021.629914.
|
[70] |
RAEFSKY S M, MATTSON M P. Adaptive responses of neuronal mitochondria to bioenergetic challenges:roles in neuroplasticity and disease resistance[J]. Free Radic Biol Med, 2017, 102:203-216. DOI: 10.1016/j.freeradbiomed.2016.11.045.
|
[71] |
ZHANG F, ZHANG L, QI Y,et al. Mitochondrial cAMP signaling[J]. Cell Mol Life Sci, 2016, 73(24):4577-4590. DOI: 10.1007/s00018-016-2282-2.
|
[72] |
MEYER J N, LEUTHNER T C, LUZ A L. Mitochondrial fusion,fission,and mitochondrial toxicity[J]. Toxicology, 2017, 391:42-53. DOI: 10.1016/j.tox.2017.07.019.
|
[73] |
POPOV L D. Mitochondrial biogenesis:an update[J]. J Cell Mol Med, 2020, 24(9):4892-4899. DOI: 10.1111/jcmm.15194.
|
[74] |
E L, BURNS J M, SWERDLOW R H. Effect of high-intensity exercise on aged mouse brain mitochondria,neurogenesis,and inflammation[J]. Neurobiol Aging, 2014, 35(11):2574-2583. DOI: 10.1016/j.neurobiolaging.2014.05.033.
|
[75] |
ETTCHETO M, PETROV D, PEDRÓS I,et al. Evaluation of neuropathological effects of a high-fat diet in a presymptomatic Alzheimer's disease stage in APP/PS1 mice[J]. J Alzheimers Dis, 2016, 54(1):233-251. DOI: 10.3233/JAD-160150.
|
[76] |
FANIBUNDA S E, DEB S, MANIYADATH B,et al. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1-PGC-1α axis[J]. Proc Natl Acad Sci U S A, 2019, 116(22):11028-11037. DOI: 10.1073/pnas.1821332116.
|
[77] |
SONG K, ZHANG Y F, GA Q,et al. Increased insulin sensitivity by high-altitude hypoxia in mice with high-fat diet-induced obesity is associated with activated AMPK signaling and subsequently enhanced mitochondrial biogenesis in skeletal muscles[J]. Obes Facts, 2020, 13(5):455-472. DOI: 10.1159/000508112.
|
[78] |
WANG S W, SHENG H, BAI Y F,et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice[J]. Nutr Diabetes, 2020, 10(1):27. DOI: 10.1038/s41387-020-00130-3.
|
[79] |
HEINONEN S, JOKINEN R, RISSANEN A,et al. White adipose tissue mitochondrial metabolism in health and in obesity[J]. Obes Rev, 2020, 21(2):e12958. DOI: 10.1111/obr.12958.
|
[80] |
E L, LU J H, SELFRIDGE J E,et al. Lactate administration reproduces specific brain and liver exercise-related changes[J]. J Neurochem, 2013, 127(1):91-100. DOI: 10.1111/jnc.12394.
|
[81] |
MARQUES-ALEIXO I, SANTOS-ALVES E, BALÇA M M,et al. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic,dynamic and auto(mito)phagy markers[J]. Neuroscience, 2015, 301:480-495. DOI: 10.1016/j.neuroscience.2015.06.027.
|
[82] |
STEINER J L, MURPHY E A, MCCLELLAN J L,et al. Exercise training increases mitochondrial biogenesis in the brain[J]. J Appl Physiol (1985), 2011, 111(4):1066-1071. DOI: 10.1152/japplphysiol.00343.2011.
|
[83] |
GIBALA M J, LITTLE J P, MACDONALD M J,et al. Physiological adaptations to low-volume,high-intensity interval training in health and disease[J]. J Physiol, 2012, 590(5):1077-1084. DOI: 10.1113/jphysiol.2011.224725.
|