[1] |
KHAN M A B, HASHIM M J, KING J K,et al. Epidemiology of type 2 diabetes-global burden of disease and forecasted trends[J]. J Epidemiol Glob Health, 2020, 10(1):107-111. DOI: 10.2991/jegh.k.191028.001.
|
[2] |
|
[3] |
DING L C, FAN L, XU X D,et al. Identification of core genes and pathways in type 2 diabetes mellitus by bioinformatics analysis[J]. Mol Med Rep, 2019, 20(3):2597-2608. DOI: 10.3892/mmr.2019.10522.
|
[4] |
FYFE M C, WHITE J R, TAYLOR A,et al. Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions[J]. Diabetologia, 2007, 50(6):1277-1287. DOI: 10.1007/s00125-007-0646-8.
|
[5] |
LI W, ZHANG X Q, SUN Y,et al. Recent clinical advances of glucokinase activators in the treatment of diabetes mellitus type 2[J]. Pharmazie, 2020, 75(6):230-235. DOI: 10.1691/ph.2020.0409.
|
[6] |
CHEN L, ZHANGY, ZHUD L. 235-OR:dorzagliatin as a glucose sensitizer achieved sustained glycemic control with good safety profiles in drug-naive T2DM patients in a 52-week phase 3 monotherapy trial (SEED)[J]. Diabetes, 2021, 70(Supplement 1). DOI: 10.2337/db21-235-or.
|
[7] |
CHEN L, ZHANGY, YANG W Y. 763-P:dorzagliatin add-on to metformin achieved sustained efficacy and good safety profiles in T2D patients in a 52-week phase 3 trial (DAWN)[J]. Diabetes, 2021, 70(Supplement 1). DOI: 10.2337/db21-763-p.
|
[8] |
ZHU D L, GAN S L, LIU Y,et al. Dorzagliatin monotherapy in Chinese patients with type 2 diabetes:a dose-ranging,randomised,double-blind,placebo-controlled,phase 2 study[J]. Lancet Diabetes Endocrinol, 2018, 6(8):627-636. DOI: 10.1016/S2213-8587(18)30105-0.
|
[9] |
ZHENG S, SHAO F, DING Y,et al. Safety,pharmacokinetics,and pharmacodynamics of globalagliatin,a glucokinase activator,in Chinese patients with type 2 diabetes mellitus:arandomized,phase ib,28-day ascending dose study[J]. Clin Drug Investig, 2020, 40(12):1155-1166. DOI: 10.1007/s40261-020-00971-x.
|
[10] |
BONADONNA R C, HEISE T, ARBET-ENGELS C,et al. Piragliatin (RO4389620),a novel glucokinase activator,lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus:amechanistic study[J]. J Clin Endocrinol Metab, 2010, 95(11):5028-5036. DOI: 10.1210/jc.2010-1041.
|
[11] |
SARABU R, BIZZARRO F T, CORBETT W L,et al. Discovery of piragliatin—first glucokinase activator studied in type 2 diabetic patients[J]. J Med Chem, 2012, 55(16):7021-7036. DOI: 10.1021/jm3008689.
|
[12] |
ZHI J G, ZHAI S P, BOLDRIN M. Dose-dependent effect of piragliatin,a glucokinase activator,on the QT interval following short-term multiple doses in patients with type 2 diabetes mellitus[J]. Clin Pharmacol Drug Dev, 2017, 6(3):258-265. DOI: 10.1002/cpdd.289.
|
[13] |
POITOUT V, LIN D C H. Modulating GPR40:therapeutic promise and potential in diabetes[J]. Drug Discov Today, 2013, 18(23/24):1301-1308. DOI: 10.1016/j.drudis.2013.09.003.
|
[14] |
YAMADA H, YOSHIDA M, ITO K,et al. Potentiation of glucose-stimulated insulin secretion by the GPR40-PLC-TRPC pathway in pancreatic β-cells[J]. Sci Rep, 2016, 6:25912. DOI: 10.1038/srep25912.
|
[15] |
MENON V, LINCOFF A M, NICHOLLS S J,et al. Fasiglifam-induced liver injury in patients with type 2 diabetes:results of a randomized controlled cardiovascular outcomes safety trial[J]. Diabetes Care, 2018, 41(12):2603-2609. DOI: 10.2337/dc18-0755.
|
[16] |
BAZYDLO-GUZENDA K, BUDA P, MACH M,et al. Evaluation of the hepatotoxicity of the novel GPR40 (FFAR1) agonist CPL207280 in the rat and monkey[J]. PLoS One, 2021, 16(9):e0257477. DOI: 10.1371/journal.pone.0257477.
|
[17] |
BAZYDLO-GUZENDA K, BUDA P, MATLOKA M,et al. CPL207280,a novel G protein-coupled receptor 40/free fatty acid receptor 1-specific agonist,shows a favorable safety profile and exerts antidiabetic effects in type 2 diabetic animals[J]. Mol Pharmacol, 2021, 100(4):335-347. DOI: 10.1124/molpharm.121.000260.
|
[18] |
KRUG A W, VADDADY P, RAILKAR R A,et al. Leveraging a clinical phase ib proof-of-concept study for the GPR40 agonist MK-8666 in patients with type 2 diabetes for model-informed phase Ⅱ dose selection[J]. ClinTranslSci, 2017, 10(5):404-411. DOI: 10.1111/cts.12479.
|
[19] |
CAMPBELL J E, DRUCKER D J. Pharmacology,physiology,and mechanisms of incretin hormone action[J]. Cell Metab, 2013, 17(6):819-837. DOI: 10.1016/j.cmet.2013.04.008.
|
[20] |
LUDVIK B, GIORGINO F, JÓDAR E,et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3):a randomised,open-label,parallel-group,phase 3 trial[J]. Lancet, 2021, 398(10300):583-598. DOI: 10.1016/S0140-6736(21)01443-4.
|
[21] |
TILLNER J, POSCH M G, WAGNER F,et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899:results of randomized,placebo-controlled first-in-human and first-in-patient trials[J]. Diabetes Obes Metab, 2019, 21(1):120-128. DOI: 10.1111/dom.13494.
|
[22] |
VISENTIN R, SCHIAVON M, GÖBEL B,et al. Dual glucagon-like peptide-1 receptor/glucagon receptor agonist SAR425899 improves beta-cell function in type 2 diabetes[J]. Diabetes Obes Metab, 2020, 22(4):640-647. DOI: 10.1111/dom.13939.
|
[23] |
NAHRA R, WANG T, GADDE K M,et al. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes:a 54-week randomized phase 2b study[J]. Diabetes Care, 2021, 44(6):1433-1442. DOI: 10.2337/dc20-2151.
|
[24] |
ASANO M, SEKIKAWA A, KIM H,et al. Pharmacokinetics,safety,tolerability and efficacy of cotadutide,a glucagon-like peptide-1 and glucagon receptor dual agonist,in phase 1 and 2 trials in overweight or obese participants of Asian descent with or without type 2 diabetes[J]. Diabetes Obes Metab, 2021, 23(8):1859-1867. DOI: 10.1111/dom.14412.
|
[25] |
DARBALAEI S, YULIANTIEE, DAIA T,et al. Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors[J]. Biochem Pharmacol, 2020, 180:114150. DOI: 10.1016/j.bcp.2020.114150.
|
[26] |
WYNNE K, PARK A J, SMALL C J,et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans:a randomised controlled trial[J]. Int J Obes (Lond), 2006, 30(12):1729-1736. DOI: 10.1038/sj.ijo.0803344.
|
[27] |
COHEN M A, ELLIS S M, LE ROUX C W,et al. Oxyntomodulin suppresses appetite and reduces food intake in humans[J]. J Clin Endocrinol Metab, 2003, 88(10):4696-4701. DOI: 10.1210/jc.2003-030421.
|
[28] |
WYNNE K, PARK A J, SMALL C J,et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects:a double-blind,randomized,controlled trial[J]. Diabetes, 2005, 54(8):2390-2395. DOI: 10.2337/diabetes.54.8.2390.
|
[29] |
SHANKAR S S, SHANKAR R R, MIXSON L A,et al. Native oxyntomodulin has significant glucoregulatory effects independent of weight loss in obese humans with and without type 2 diabetes[J]. Diabetes, 2018, 67(6):1105-1112. DOI: 10.2337/db17-1331.
|
[30] |
ALEXIADOU K, TAN T M M. Gastrointestinal peptides as therapeutic targets to mitigate obesity and metabolic syndrome[J]. CurrDiabetes Rep, 2020, 20(7):1-7. DOI: 10.1007/s11892-020-01309-9.
|
[31] |
YANG P Y, ZOU H F, AMSO Z,et al. New generation oxyntomodulin peptides with improved pharmacokinetic profiles exhibit weight reducing and anti-steatotic properties in mice[J]. Bioconjug Chem, 2020, 31(4):1167-1176. DOI: 10.1021/acs.bioconjchem.0c00093.
|
[32] |
DING W X, WANG H Y, PENG L J,et al. Novel peptidic dual GLP-1/glucagon receptor agonist alleviates diabetes and diabetic complications in combination with low-intensity ultrasound[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23):12423-12436. DOI: 10.26355/eurrev_202012_24038.
|
[33] |
LAFFERTY R A, O'HARTE F P M, IRWIN N,et al. Proglucagon-derived peptides as therapeutics[J]. Front Endocrinol(Lausanne), 2021, 12:689678. DOI: 10.3389/fendo.2021.689678.
|
[34] |
KIM M K, CHEONG Y H, LEE S H,et al. A novel GPR119 agonist DA-1241 preserves pancreatic function via the suppression of ER stress and increased PDX1 expression[J]. Biomedecine Pharmacother, 2021, 144:112324. DOI: 10.1016/j.biopha.2021.112324.
|
[35] |
MATSUMOTO K, YOSHITOMI T, ISHIMOTO Y,et al. DS-8500a,an orally available G protein-coupled receptor 119 agonist,upregulates glucagon-like peptide-1 and enhances glucose-dependent insulin secretion and improves glucose homeostasis in type 2 diabetic rats[J]. J Pharmacol Exp Ther, 2018, 367(3):509-517. DOI: 10.1124/jpet.118.250019.
|
[36] |
YAMADA Y, TERAUCHI Y, WATADA H,et al. Efficacy and safety of GPR119 agonist DS-8500a in Japanese patients with type 2 diabetes:a randomized,double-blind,placebo-controlled,12-week study[J]. AdvTher, 2018, 35(3):367-381. DOI: 10.1007/s12325-018-0668-2.
|
[37] |
TERAUCHI Y, YAMADA Y, WATADA H,et al. Efficacy and safety of the G protein-coupled receptor 119 agonist DS-8500a in Japanese type 2 diabetes mellitus patients with inadequate glycemic control on sitagliptin:a phase 2 randomized placebo-controlled study[J]. J Diabetes Investig, 2018, 9(6):1333-1341. DOI: 10.1111/jdi.12846.
|
[38] |
KATO M, FURUIE H, KAMIYAMA E,et al. Safety and pharmacokinetics of DS-8500a,a novel GPR119 agonist,after multiple oral doses in healthy Japanese males[J]. Clin Drug Investig, 2018, 38(6):519-525. DOI: 10.1007/s40261-018-0633-5.
|
[39] |
RITTER K, BUNING C, HALLAND N,et al. G protein-coupled receptor 119 (GPR119) agonists for the treatment of diabetes:recent progress and prevailing challenges[J]. J Med Chem, 2016, 59(8):3579-3592. DOI: 10.1021/acs.jmedchem.5b01198.
|
[40] |
KANG S U. GPR119 agonists:a promising approach for T2DM treatment? A SWOT analysis of GPR119[J]. Drug Discov Today, 2013, 18(23/24):1309-1315. DOI: 10.1016/j.drudis.2013.09.011.
|
[41] |
ANSARULLAH, LU Y, HOLSTEIN M,et al. Stimulating β-cell regeneration by combining a GPR119 agonist with a DPP-IV inhibitor[J]. PLoS One, 2013, 8(1):e53345. DOI: 10.1371/journal.pone.0053345.
|
[42] |
LI G, HUAN Y, YUAN B K,et al. Discovery of novel xanthine compounds targeting DPP-IV and GPR119 as anti-diabetic agents[J]. Eur J Med Chem, 2016, 124:103-116. DOI: 10.1016/j.ejmech.2016.08.023.
|
[43] |
HUAN Y, JIANG Q, LI G,et al. The dual DPP4 inhibitor and GPR119 agonist HBK001 regulates glycemic control and beta cell function ex and in vivo[J]. Sci Rep, 2017, 7(1):4351. DOI: 10.1038/s41598-017-04633-5.
|
[44] |
LI G, MENG B X, YUAN B K,et al. The optimization of xanthine derivatives leading to HBK001 hydrochloride as a potent dual ligand targeting DPP-IV and GPR119[J]. Eur J Med Chem, 2020, 188:112017. DOI: 10.1016/j.ejmech.2019.112017.
|
[45] |
BOUHAJJA H, ABDELHEDI R, AMOURI A,et al. Potential role of liver enzyme levels as predictive markers of glucose metabolism disorders in a Tunisian population[J]. Can J Physiol Pharmacol, 2018, 96(11):1171-1180. DOI: 10.1139/cjpp-2017-0579.
|
[46] |
SHIBABAW T, DESSIE G, MOLLA M D,et al. Assessment of liver marker enzymes and its association with type 2 diabetes mellitus in Northwest Ethiopia[J]. BMC Res Notes, 2019, 12(1):707. DOI: 10.1186/s13104-019-4742-x.
|
[47] |
KAZIERAD D J, BERGMAN A, TAN B,et al. Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus[J]. Diabetes Obes Metab, 2016, 18(8):795-802. DOI: 10.1111/dom.12672.
|
[48] |
GUZMAN C B, ZHANG X M, LIU R,et al. Treatment with LY2409021,a glucagon receptor antagonist,increases liver fat in patients with type 2 diabetes[J]. Diabetes Obes Metab, 2017, 19(11):1521-1528. DOI: 10.1111/dom.12958.
|
[49] |
KAZDA C M, FRIAS J, FOGA I,et al. Treatment with the glucagon receptor antagonist LY2409021 increases ambulatory blood pressure in patients with type 2 diabetes[J]. Diabetes Obes Metab, 2017, 19(8):1071-1077. DOI: 10.1111/dom.12904.
|
[50] |
VAJDA E G,POTTER S C,FUJITAKI J M,et al. LGD-6972,a potent,orally-bioavailable,small molecule glucagon receptor antagonist for the treatment of type 2 diabetes[J]. Diabetes,2012,61:A252.
|
[51] |
VAJDA E G, LOGAN D, LASSETER K,et al. Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus[J]. Diabetes Obes Metab, 2017, 19(1):24-32. DOI: 10.1111/dom.12752.
|
[52] |
PETTUS J H, D'ALESSIO D, FRIAS J P,et al. Efficacy and safety of the glucagon receptor antagonist RVT-1502 in type 2 diabetes uncontrolled on metformin monotherapy:a 12-week dose-ranging study[J]. Diabetes Care, 2020, 43(1):161-168. DOI: 10.2337/dc19-1328.
|
[53] |
HÆDERSDAL S, LUND A, MAAGENSEN H,et al. The glucagon receptor antagonist LY2409021 has no effect on postprandial glucose in type 2 diabetes[J]. Eur J Endocrinol, 2022, 186(2):207-221. DOI: 10.1530/EJE-21-0865.
|
[54] |
BENNETT C F, SWAYZE E E. RNA targeting therapeutics:molecular mechanisms of antisense oligonucleotides as a therapeutic platform[J]. Annu Rev Pharmacol Toxicol, 2010, 50:259-293. DOI: 10.1146/annurev.pharmtox.010909.105654.
|
[55] |
CROOKE S T, WITZTUM J L, BENNETT C F,et al. RNA-targeted therapeutics[J]. Cell Metab, 2019, 29(2):501. DOI: 10.1016/j.cmet.2019.01.001.
|
[56] |
MORGAN E S, TAI L J, PHAM N C,et al. Antisense inhibition of glucagon receptor by IONIS-GCGRRximproves type 2 diabetes without increase in hepatic glycogen content in patients with type 2 diabetes on stable metformin therapy[J]. Diabetes Care, 2019, 42(4):585-593. DOI: 10.2337/dc18-1343.
|
[57] |
JOHNSON T O, ERMOLIEFF J, JIROUSEK M R. Protein tyrosine phosphatase 1B inhibitors for diabetes[J]. NatRev Drug Discov, 2002, 1(9):696-709. DOI: 10.1038/nrd895.
|
[58] |
DIGENIO A, PHAM N C, WATTS L M,et al. Antisense inhibition of protein tyrosine phosphatase 1B with IONIS-PTP-1B Rx improves insulin sensitivity and reduces weight in overweight patients with type 2 diabetes[J]. Diabetes Care, 2018, 41(4):807-814. DOI: 10.2337/dc17-2132.
|
[59] |
LUO J, HOU Y F, XIE M Y,et al. CYC31,A natural bromophenol PTP1B inhibitor,activates insulin signaling and improves long chain-fatty acid oxidation in C2C12 myotubes[J]. Mar Drugs, 2020, 18(5):E267. DOI: 10.3390/md18050267.
|
[60] |
BRUDER-NASCIMENTOT, BUTLER B R, HERRENDJ,et al. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension[J]. Pharmacol Res, 2015, 102:235-244. DOI: 10.1016/j.phrs.2015.10.012.
|
[61] |
GUZMÁN-ÁVILA R, FLORES-MORALES V, PAOLI P,et al. Ursolic acid derivatives as potential antidiabetic agents:in vitro,in vivo,and in silico studies[J]. Drug Dev Res, 2018, 79(2):70-80. DOI: 10.1002/ddr.21422.
|
[62] |
LIN X L, LIU Y B, HU H J. Metabolic role of fibroblast growth factor 21 in liver,adipose and nervous system tissues[J]. Biomed Rep, 2017, 6(5):495-502. DOI: 10.3892/br.2017.890.
|
[63] |
KHARITONENKOV A, SHIYANOVA T L, KOESTER A,et al. FGF-21 as a novel metabolic regulator[J]. J Clin Invest, 2005, 115(6):1627-1635. DOI: 10.1172/JCI23606.
|
[64] |
|
[65] |
GAICH G, CHIEN J Y, FU H D,et al. The effects of LY2405319,an FGF21 analog,in obese human subjects with type 2 diabetes[J]. Cell Metab, 2013, 18(3):333-340. DOI: 10.1016/j.cmet.2013.08.005.
|
[66] |
ABDELMALEK M F, CHARLES E D, SANYAL A J,et al. The FALCON program:two phase 2b randomized,double-blind,placebo-controlled studies to assess the efficacy and safety of pegbelfermin in the treatment of patients with nonalcoholic steatohepatitis and bridging fibrosis or compensated cirrhosis[J]. Contemp Clin Trials, 2021, 104:106335. DOI: 10.1016/j.cct.2021.106335.
|
[67] |
KIM A M, SOMAYAJI V R, DONG J Q,et al. Once-weekly administration of a long-acting fibroblast growth factor 21 analogue modulates lipids,bone turnover markers,blood pressure and body weight differently in obese people with hypertriglyceridaemia and in non-human Primates[J]. Diabetes Obes Metab, 2017, 19(12):1762-1772. DOI: 10.1111/dom.13023.
|
[68] |
TURNER T, CHEN X, ZAHNER M,et al. FGF21 increases water intake,urine output and blood pressure in rats[J]. PLoS One, 2018, 13(8):e0202182. DOI: 10.1371/journal.pone.0202182.
|
[69] |
PAN D S, WANG W, LIU N S,et al. Chiglitazar preferentially regulates gene expression via configuration-restricted binding and phosphorylation inhibition of PPARγ[J]. PPAR Res, 2017, 2017:4313561. DOI: 10.1155/2017/4313561.
|
[70] |
|
[71] |
LI X J, YU J, WU M,et al. Pharmacokinetics and safety of chiglitazar,a peroxisome proliferator-activated receptor pan-agonist,in patients <65 and ≥65 years with type 2 diabetes[J]. Clin Pharmacol Drug Dev, 2021, 10(7):789-796. DOI: 10.1002/cpdd.893.
|
[72] |
LI R, METCALFE M J, FERGUSON J E 3rd,et al. Effects of thiazolidinedione in patients with active bladder cancer[J]. BJU Int, 2018, 121(2):244-251. DOI: 10.1111/bju.14009.
|
[73] |
ROUSSEL R, HADJADJ S, PASQUET B,et al. Thiazolidinedione use is not associated with worse cardiovascular outcomes:a study in 28,332 high risk patients with diabetes in routine clinical practice:brief title:Thiazolidinedione use and mortality[J]. Int J Cardiol, 2013, 167(4):1380-1384. DOI: 10.1016/j.ijcard.2012.04.019.
|
[74] |
GOLTSMAN I, KHOURY E E, WINAVER J,et al. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? [J]. Pharmacol Ther, 2016, 168:75-97. DOI: 10.1016/j.pharmthera.2016.09.007.
|
[75] |
KU Y H, CHO B J, KIM M J,et al. Rosiglitazone increases endothelial cell migration and vascular permeability through Akt phosphorylation[J]. BMC Pharmacol Toxicol, 2017, 18(1):62. DOI: 10.1186/s40360-017-0169-y.
|
[76] |
FAROOQUI K J, MITHAL A, KERWEN A K,et al. Type 2 diabetes and bone fragility—an under-recognized association[J]. Diabetes Metab Syndr, 2021, 15(3):927-935. DOI: 10.1016/j.dsx.2021.04.017.
|
[77] |
DEPAOLI A M, HIGGINS L S, HENRY R R,et al. Can a selective PPARγ modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? [J]. Diabetes Care, 2014, 37(7):1918-1923. DOI: 10.2337/dc13-2480.
|
[78] |
DEFRONZO R A. Lilly lecture 1987. The triumvirate:beta-cell,muscle,liver. A collusion responsible for NIDDM[J]. Diabetes, 1988, 37(6):667-687. DOI: 10.2337/diab.37.6.667.
|