[1] |
CHUNG B H, HORIE S, CHIONG E. Clinical studies investigating the use of leuprorelin for prostate cancer in Asia[J]. Prostate Int,2020,8(1):1-9. DOI:10.1016/j.prnil.2019.06.001.
|
[2] |
SANTER F R, ERB H H H, MCNEILL R V. Therapy escape mechanisms in the malignant prostate[J]. Semin Cancer Biol,2015,35:133-144. DOI:10.1016/j.semcancer.2015.08.005.
|
[3] |
KIRBY M, HIRST C, CRAWFORD E D. Characterising the castration-resistant prostate cancer population:a systematic review[J]. Int J Clin Pract,2011,65(11):1180-1192. DOI:10.1111/j.1742-1241.2011.02799.x.
|
[4] |
HARRIS W P, MOSTAGHEL E A, NELSON P S,et al. Androgen deprivation therapy:progress in understanding mechanisms of resistance and optimizing androgen depletion[J]. Nat Clin Pract Urol,2009,6(2):76-85. DOI:10.1038/ncpuro1296.
|
[5] |
PUNIT S, DRABOVICH A P, JARVI K A,et al. Mechanisms of androgen-independent prostate cancer[J]. EJIFCC,2014,25(1):42-54.
|
[6] |
GUO J S, GU Y Z, MA X Y,et al. Identification of hub genes and pathways in adrenocortical carcinoma by integrated bioinformatic analysis[J]. J Cell Mol Med,2020,24(8):4428-4438. DOI:10.1111/jcmm.15102.
|
[7] |
SUN Z L, MAO Y H, ZHANG X,et al. Identification of ARHGEF38,NETO2,GOLM1,and SAPCD2 associated with prostate cancer progression by bioinformatic analysis and experimental validation[J]. Front Cell Dev Biol,2021,9:718638. DOI:10.3389/fcell.2021.718638.
|
[8] |
SHEN H, GUO Y L, LI G H,et al. Gene expression analysis reveals key genes and signalings associated with the prognosis of prostate cancer[J]. Comput Math Methods Med,2021,2021:9946015. DOI:10.1155/2021/9946015.
|
[9] |
GU P, YANG D R, ZHU J,et al. Bioinformatics analysis identified hub genes in prostate cancer tumorigenesis and metastasis[J]. Math Biosci Eng,2021,18(4):3180-3196. DOI:10.3934/mbe.2021158.
|
[10] |
PARRISH R S, SPENCER H J 3rd. Effect of normalization on significance testing for oligonucleotide microarrays[J]. J Biopharm Stat,2004,14(3):575-589. DOI:10.1081/BIP-200025650.
|
[11] |
FERREIRA J A. The Benjamini-Hochberg method in the case of discrete test statistics[J]. Int J Biostat,2007,3(1):Article11. DOI:10.2202/1557-4679.1065.
|
[12] |
HUANG D W, SHERMAN B T, LEMPICKI R A. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Res,2009,37(1):1-13. DOI:10.1093/nar/gkn923.
|
[13] |
ASHBURNER M, BALL C A, BLAKE J A,et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium[J]. Nat Genet,2000,25(1):25-29. DOI:10.1038/75556.
|
[14] |
OGATA H, GOTO S, SATO K,et al. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res,1999,27(1):29-34. DOI:10.1093/nar/27.1.29.
|
[15] |
WALTER W, SÁNCHEZ-CABO F, RICOTE M. GOplot:an R package for visually combining expression data with functional analysis[J]. Bioinformatics,2015,31(17):2912-2914. DOI:10.1093/bioinformatics/btv300.
|
[16] |
SNEL B, LEHMANN G, BORK P,et al. STRING:a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene[J]. Nucleic Acids Res,2000,28(18):3442-3444. DOI:10.1093/nar/28.18.3442.
|
[17] |
SAITO R, SMOOT M E, ONO K,et al. A travel guide to Cytoscape plugins[J]. Nat Methods,2012,9(11):1069-1076. DOI:10.1038/nmeth.2212.
|
[18] |
BADER G D, HOGUE C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics,2003,4:2. DOI:10.1186/1471-2105-4-2.
|
[19] |
GUO Y Z, SUN H H, WANG X T,et al. Transcriptomic analysis reveals key lncRNAs associated with ribosomal biogenesis and epidermis differentiation in head and neck squamous cell carcinoma[J]. J Zhejiang Univ Sci B,2018,19(9):674-688. DOI:10.1631/jzus.B1700319.
|
[20] |
TANG Z F, LI C W, KANG B X,et al. GEPIA:a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res,2017,45(W1):W98-102. DOI:10.1093/nar/gkx247.
|
[21] |
ROBIN X, TURCK N, HAINARD A,et al. pROC:an open-source package for R and S+ to analyze and compare ROC curves[J]. BMC Bioinformatics,2011,12:77. DOI:10.1186/1471-2105-12-77.
|
[22] |
YAO F, ZHU Z F, WEN J,et al. PODN is a prognostic biomarker and correlated with immune infiltrates in osteosarcoma[J]. Cancer Cell Int,2021,21(1):381. DOI:10.1186/s12935-021-02086-5.
|
[23] |
CHANDRASEKAR T, YANG J C, GAO A C,et al. Mechanisms of resistance in castration-resistant prostate cancer (CRPC)[J]. Transl Androl Urol,2015,4(3):365-380. DOI:10.3978/j.issn.2223-4683.2015.05.02.
|
[24] |
MARCUS A I, PETERS U, THOMAS S L,et al. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and-sensitive cancer cells[J]. J Biol Chem,2005,280(12):11569-11577. DOI:10.1074/jbc.M413471200.
|
[25] |
HE H Q, HAO J, DONG X,et al. ZRSR2 overexpression is a frequent and early event in castration-resistant prostate cancer development[J]. Prostate Cancer Prostatic Dis,2021,24(3):775-785. DOI:10.1038/s41391-021-00322-7.
|
[26] |
WANG Q, LI Z A, YANG J,et al. Loss of NEIL3 activates radiotherapy resistance in the progression of prostate cancer[J]. Cancer Biol Med,2021. DOI:10.20892/j.issn.2095-3941.2020.0550.
|
[27] |
KIM M Y, JUNG A R, SHIN D,et al. Niclosamide exerts anticancer effects through inhibition of the FOXM1-mediated DNA damage response in prostate cancer[J]. Am J Cancer Res,2021,11(6):2944-2959.
|
[28] |
YU H T. Cdc20:a WD40 activator for a cell cycle degradation machine[J]. Mol Cell,2007,27(1):3-16. DOI:10.1016/j.molcel.2007.06.009.
|
[29] |
GAYYED M F, EL-MAQSOUD N M, TAWFIEK E R,et al. A comprehensive analysis of CDC20 overexpression in common malignant tumors from multiple organs:its correlation with tumor grade and stage[J]. Tumour Biol,2016,37(1):749-762. DOI:10.1007/s13277-015-3808-1.
|
[30] |
WANG L X, YANG C L, CHU M,et al. Cdc20 induces the radioresistance of bladder cancer cells by targeting FoxO1 degradation[J]. Cancer Lett,2021,500:172-181. DOI:10.1016/j.canlet.2020.11.052.
|
[31] |
YANG G, WANG G, XIONG Y F,et al. CDC20 promotes the progression of hepatocellular carcinoma by regulating epithelial-mesenchymal transition[J]. Mol Med Rep,2021,24(1):483. DOI:10.3892/mmr.2021.12122.
|
[32] |
DAI L, SONG Z X, WEI D P,et al. CDC20 and PTTG1 are important biomarkers and potential therapeutic targets for metastatic prostate cancer[J]. Adv Ther,2021,38(6):2973-2989. DOI:10.1007/s12325-021-01729-3.
|
[33] |
ZHANG Q, HUANG H, LIU A,et al. Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of β-catenin in cancer stem-like cells[J]. EBioMedicine,2019,42:397-407. DOI:10.1016/j.ebiom.2019.03.032.
|
[34] |
LI K, MAO Y H, LU L,et al. Silencing of CDC20 suppresses metastatic castration-resistant prostate cancer growth and enhances chemosensitivity to docetaxel[J]. Int J Oncol,2016,49(4):1679-1685. DOI:10.3892/ijo.2016.3671.
|
[35] |
TO-HO K W, CHEUNG H W, LING M T,et al. MAD2DeltaC induces aneuploidy and promotes anchorage-independent growth in human prostate epithelial cells[J]. Oncogene,2008,27(3):347-357. DOI:10.1038/sj.onc.1210633.
|
[36] |
WU Y, TAN L M, CHEN J J,et al. MAD2 combined with mitotic spindle apparatus (MSA) and anticentromere antibody (ACA) for diagnosis of small cell lung cancer (SCLC)[J]. Med Sci Monit,2018,24:7541-7547. DOI:10.12659/MSM.909772.
|
[37] |
LI Y H, BAI W J, ZHANG J J. miR-200c-5p suppresses proliferation and metastasis of human hepatocellular carcinoma (HCC) via suppressing MAD2L1[J]. Biomed Pharmacother,2017,92:1038-1044. DOI:10.1016/j.biopha.2017.05.092.
|
[38] |
CHOI J W, KIM Y, LEE J H,et al. High expression of spindle assembly checkpoint proteins CDC20 and MAD2 is associated with poor prognosis in urothelial bladder cancer[J]. Virchows Arch,2013,463(5):681-687. DOI:10.1007/s00428-013-1473-6.
|
[39] |
RAEMAEKERS T, RIBBECK K, BEAUDOUIN J,et al. NuSAP,a novel microtubule-associated protein involved in mitotic spindle organization[J]. J Cell Biol,2003,162(6):1017-1029. DOI:10.1083/jcb.200302129.
|
[40] |
GORDON C A, GONG X, GANESH D,et al. NUSAP1 promotes invasion and metastasis of prostate cancer[J]. Oncotarget,2017,8(18):29935-29950. DOI:10.18632/oncotarget.15604.
|
[41] |
GULZAR Z G, MCKENNEY J K, BROOKS J D. Increased expression of NuSAP in recurrent prostate cancer is mediated by E2F1[J]. Oncogene,2013,32(1):70-77. DOI:10.1038/onc.2012.27.
|
[42] |
GORDON C A, GULZAR Z G, BROOKS J D. NUSAP1 expression is upregulated by loss of RB1 in prostate cancer cells[J]. Prostate,2015,75(5):517-526. DOI:10.1002/pros.22938.
|
[43] |
WU Y G, LIU H X, GONG Y F,et al. ANKRD22 enhances breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression[J]. Bosn J Basic Med Sci,2021,21(3):294-304. DOI:10.17305/bjbms.2020.4701.
|
[44] |
GUO H, ZOU J P, ZHOU L,et al. NUSAP1 promotes gastric cancer tumorigenesis and progression by stabilizing the YAP1 protein[J]. Front Oncol,2020,10:591698. DOI:10.3389/fonc.2020.591698.
|
[45] |
ZHANG Y Y, HUANG K T, CAI H H,et al. The role of nucleolar spindle-associated protein 1 in human ovarian cancer[J]. J Cell Biochem,2020,121(11):4397-4405. DOI:10.1002/jcb.29661.
|
[46] |
XU Z Y, WANG Y, XIONG J,et al. NUSAP1 knockdown inhibits cell growth and metastasis of non-small-cell lung cancer through regulating BTG2/PI3K/Akt signaling[J]. J Cell Physiol,2020,235(4):3886-3893. DOI:10.1002/jcp.29282.
|
[47] |
GAO S, YIN H B, TONG H,et al. Nucleolar and spindle associated protein 1 (NUSAP1) promotes bladder cancer progression through the TGF-β signaling pathway[J]. Onco Targets Ther,2020,13:813-825. DOI:10.2147/OTT.S237127.
|
[48] |
LI H, ZHANG W J, YAN M,et al. Nucleolar and spindle associated protein 1 promotes metastasis of cervical carcinoma cells by activating Wnt/β-catenin signaling[J]. J Exp Clin Cancer Res,2019,38(1):33. DOI:10.1186/s13046-019-1037-y.
|
[49] |
LIU Z X, GUAN C Q, LU C H,et al. High NUSAP1 expression predicts poor prognosis in colon cancer[J]. Pathol Res Pract,2018,214(7):968-973. DOI:10.1016/j.prp.2018.05.017.
|