中国全科医学 ›› 2022, Vol. 25 ›› Issue (09): 1141-1147.DOI: 10.12114/j.issn.1007-9572.2021.02.135
曾霖1, 张鹏翔1, 黄倩1, 王高祥2, 李惠林3,*
收稿日期:
2021-11-11
修回日期:
2021-12-20
出版日期:
2022-03-20
发布日期:
2022-03-01
通讯作者:
李惠林
基金资助:
Research Progress of the Prevention and Treatment of Metabolic Diseases Based on Short Chain Fatty Acids
ZENG Lin1,ZHANG Pengxiang1,HUANG Qian1,WANG Gaoxiang2,LI Huilin3*
1.The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine,Shenzhen 518033,China
2.Nanjing University of Chinese Medicine,Nanjing 210023,China
3.Shenzhen Traditional Chinese Medicine Hospital,Shenzhen 518033,China
*Corresponding author:LI Huilin,Professor,Doctoral supervisor;E-mail:sztcmlhl@163.com
Received:
2021-11-11
Revised:
2021-12-20
Published:
2022-03-20
Online:
2022-03-01
摘要: 短链脂肪酸(SCFAs)是一类含有1~6个碳原子的饱和脂肪酸,主要由肠道内特定菌群通过发酵膳食纤维产生,对维持肠道内环境稳态发挥重要作用。近年来研究表明SCFAs可调节糖脂代谢、调节能量平衡、维持肠道屏障、减轻炎性反应,并通过上述多途径参与2型糖尿病、肥胖、脂代谢紊乱、非酒精性脂肪性肝病等代谢性疾病的发生与发展。本文总结了SCFAs调控代谢的机制及其防治代谢性疾病的研究进展,旨在为代谢性疾病的防治提供更多参考资料。
中图分类号:
ZENG Lin, ZHANG Pengxiang, HUANG Qian, WANG Gaoxiang, LI Huilin.
Research Progress of the Prevention and Treatment of Metabolic Diseases Based on Short Chain Fatty Acids [J]. Chinese General Practice, 2022, 25(09): 1141-1147.
[1] | KIMURA I,ICHIMURA A,OHUE-KITANO R,et al. Free fatty acid receptors in health and disease[J]. Physiol Rev,2020,100(1):171-210. DOI:10.1152/physrev.00041.2018. |
[2] | KOH A,DE VADDER F,KOVATCHEVA-DATCHARY P,et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332-1345. DOI:10.1016/j.cell.2016.05.041. |
[3] | STUMPFF F. A look at the smelly side of physiology:transport of short chain fatty acids[J]. Pflugers Arch,2018,470(4):571-598. DOI:10.1007/s00424-017-2105-9. |
[4] | SIVAPRAKASAM S,BHUTIA Y D,YANG S,et al. Short-chain fatty acid transporters:role in colonic homeostasis[J]. Compr Physiol,2017,8(1):299-314. DOI:10.1002/cphy.c170014. |
[5] | PSICHAS A,SLEETH M L,MURPHY K G,et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents[J]. Int J Obes:Lond,2015,39(3):424-429. DOI:10.1038/ijo.2014.153. |
[6] | NARAOKA Y,YAMAGUCHI T,HU A,et al. Short chain fatty acids upregulate adipokine production in type 2 diabetes-derived human adipocytes[J]. Acta Endocrinol (Buchar),2018,14(3):287-293. DOI:10.4183/aeb.2018.287. |
[7] | LI Z,YI C X,KATIRAEI S,et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit[J]. Gut,2018,67(7):1269-1279. DOI:10.1136/gutjnl-2017-314050. |
[8] | FROST G,SLEETH M L,SAHURI-ARISOYLU M,et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J]. Nat Commun,2014,5:3611. DOI:10.1038/ncomms4611. |
[9] | PERRY R J,PENG L,BARRY N A,et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature,2016,534(7606):213-217. DOI:10.1038/nature18309. |
[10] | KIMURA I,OZAWA K,INOUE D,et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J]. Nat Commun,2013,4:1829. DOI:10.1038/ncomms2852. |
[11] | LU Y Y,FAN C N,LI P,et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota[J]. Sci Rep,2016,6:37589. DOI:10.1038/srep37589. |
[12] | SAMBEAT A,GULYAEVA O,DEMPERSMIER J,et al. LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program[J]. Cell Rep,2016,15(11):2536-2549. DOI:10.1016/j.celrep.2016.05.019. |
[13] | WANG D,LIU C D,LI H F,et al. LSD1 mediates microbial metabolite butyrate-induced thermogenesis in brown and white adipose tissue[J]. Metabolism,2020,102:154011. DOI:10.1016/j.metabol.2019.154011. |
[14] | BO T B,ZHANG X Y,WEN J,et al. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii)[J]. Isme J,2019,13(12):3037-3053. DOI:10.1038/s41396-019-0492-y. |
[15] | KHAKISAHNEH S,ZHANG X Y,NOURI Z,et al. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations[J]. mSystems,2020,5(5):e514-520. DOI:10.1128/mSystems.00514-20. |
[16] | DE GOFFAU M C,LUOPAJÄRVI K,KNIP M,et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without[J]. Diabetes,2013,62(4):1238-1244. DOI:10.2337/db12-0526. |
[17] | LI H P,CHEN X,LI M Q. Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity[J]. Int J Clin Exp Pathol,2013,6(8):1574-1584. |
[18] | LUNDH M,GALBO T,POULSEN S S,et al. Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats[J]. Diabetes Obes Metab,2015,17(7):703-707. DOI:10.1111/dom.12470. |
[19] | YAMATO E. High dose of histone deacetylase inhibitors affects insulin secretory mechanism of pancreatic beta cell line[J]. Endocr Regul,2018,52(1):21-26. DOI:10.2478/enr-2018-0004. |
[20] | KHAN S,JENA G B. Protective role of sodium butyrate,a HDAC inhibitor on beta-cell proliferation,function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways:study in juvenile diabetic rat[J]. Chem Biol Interact,2014,213:1-12. DOI:10.1016/j.cbi.2014.02.001. |
[21] | ELGAMAL D A,ABOU-ELGHAIT A T,ALI A Y,et al. Ultrastructure characterization of pancreatic β-cells is accompanied by modulatory effects of the HDAC inhibitor sodium butyrate on the PI3/AKT insulin signaling pathway in juvenile diabetic rats[J]. Mol Cell Endocrinol,2020,503:110700. DOI:10.1016/j.mce.2019.110700. |
[22] | GUO Y,XIAO Z,WANG Y N,et al. Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression[J]. Front Endocrinol (Lausanne),2018,9:630. DOI:10.3389/fendo.2018.00630. |
[23] | DEN BESTEN G,BLEEKER A,GERDING A,et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes,2015,64(7):2398-2408. DOI:10.2337/db14-1213. |
[24] | MOLLICA M P,MATTACE RASO G,CAVALIERE G,et al. Butyrate regulates liver mitochondrial function,efficiency,and dynamics in insulin-resistant obese mice[J]. Diabetes,2017,66(5):1405-1418. DOI:10.2337/db16-0924. |
[25] | TIROSH A,CALAY E S,TUNCMAN G,et al. The short-chain fatty acid propionate increases glucagon and FABP4 production,impairing insulin action in mice and humans[J]. Sci Transl Med,2019,11(489):eaav0120. DOI:10.1126/scitranslmed.aav0120. |
[26] | DE VADDER F,KOVATCHEVA-DATCHARY P,ZITOUN C,et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J]. Cell Metab,2016,24(1):151-157. DOI:10.1016/j.cmet.2016.06.013. |
[27] | DE VADDER F,KOVATCHEVA-DATCHARY P,GONCALVES D,et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell,2014,156(1/2):84-96. DOI:10.1016/j.cell.2013.12.016. |
[28] | LU Y Y,FAN C N,LI P,et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota[J]. Sci Rep,2016,6:37589. DOI:10.1038/srep37589. |
[29] | LI Z,YI C X,KATIRAEI S,et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit[J]. Gut,2018,67(7):1269-1279. DOI:10.1136/gutjnl-2017-314050. |
[30] | VOZZA A,PARISI G,DE LEONARDIS F,et al. UCP2 transports C4 metabolites out of mitochondria,regulating glucose and glutamine oxidation[J]. Proc Natl Acad Sci USA,2014,111(3):960-965. DOI:10.1073/pnas.1317400111. |
[31] | GAO Z G,YIN J,ZHANG J,et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes,2009,58(7):1509-1517. DOI:10.2337/db08-1637. |
[32] | HENAGAN T M,STEFANSKA B,FANG Z D,et al. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation,obesity and insulin resistance through nucleosome positioning[J]. Br J Pharmacol,2015,172(11):2782-2798. DOI:10.1111/bph.13058. |
[33] | ARAÚJO J R,TAZI A,BURLEN-DEFRANOUX O,et al. Fermentation products of commensal bacteria alter enterocyte lipid metabolism[J]. Cell Host Microbe,2020,27(3):358-375.e7. DOI:10.1016/j.chom.2020.01.028. |
[34] | GUI H B,SHEN Z M. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats[J]. J Dairy Sci,2016,99(8):6627-6638. DOI:10.3168/jds.2015-10446. |
[35] | ZHAO J B,LIU P,WU Y,et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets[J]. J Agric Food Chem,2018,66(30):7995-8004. DOI:10.1021/acs.jafc.8b02545. |
[36] | FENG Y H,WANG Y,WANG P,et al. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy[J]. Cell Physiol Biochem,2018,49(1):190-205. DOI:10.1159/000492853. |
[37] | FACHI J L,SÉCCA C,RODRIGUES P B,et al. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2[J]. J Exp Med,2020,217(3):e20190489. DOI:10.1084/jem.20190489. |
[38] | DUSCHA A,GISEVIUS B,HIRSCHBERG S,et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism[J]. Cell,2020,180(6):1067-1080.e16. DOI:10.1016/j.cell.2020.02.035. |
[39] | RAU M,REHMAN A,DITTRICH M,et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease[J]. United European Gastroenterol J,2018,6(10):1496-1507. DOI:10.1177/2050640618804444. |
[40] | KELLY C J,ZHENG L,CAMPBELL E L,et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host Microbe,2015,17(5):662-671. DOI:10.1016/j.chom.2015.03.005. |
[41] | FORSLUND K,HILDEBRAND F,NIELSEN T,et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature,2015,528(7581):262-266. DOI:10.1038/nature15766. |
[42] | WU H,ESTEVE E,TREMAROLI V,et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes,contributing to the therapeutic effects of the drug[J]. Nat Med,2017,23(7):850-858. DOI:10.1038/nm.4345. |
[43] | DE LA CUESTA-ZULUAGA J,MUELLER N T,CORRALES-AGUDELO V,et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut[J]. Diabetes Care,2017,40(1):54-62. DOI:10.2337/dc16-1324. |
[44] | BRUNKWALL L,ORHO-MELANDER M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes:from current human evidence to future possibilities[J]. Diabetologia,2017,60(6):943-951. DOI:10.1007/s00125-017-4278-3. |
[45] | ZHANG X,FANG Z,ZHANG C,et al. Effects of acarbose on the gut microbiota of prediabetic patients:a randomized,double-blind,controlled crossover trial[J]. Diabetes Ther,2017,8(2):293-307. DOI:10.1007/s13300-017-0226-y. |
[46] | YAN X F,FENG B,LI P C,et al. Microflora disturbance during progression of glucose intolerance and effect of sitagliptin:an animal study[J]. J Diabetes Res,2016,2016:2093171. DOI:10.1155/2016/2093171. |
[47] | WANG L,LI P,TANG Z,et al. Structural modulation of the gut microbiota and the relationship with body weight:compared evaluation of liraglutide and saxagliptin treatment[J]. Sci Rep,2016,6:33251. DOI:10.1038/srep33251. |
[48] | LIAO X Y,SONG L Y,ZENG B H,et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis[J]. EBioMedicine,2019,44:665-674. DOI:10.1016/j.ebiom.2019.03.057. |
[49] | JAYACHANDRAN M,CHEN J L,CHUNG S S M,et al. A critical review on the impacts of β-glucans on gut microbiota and human health[J]. J Nutr Biochem,2018,61:101-110. DOI:10.1016/j.jnutbio.2018.06.010. |
[50] | ZHANG C,MA S,WU J,et al. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action:The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin[J]. Pharmacol Res,2020,159:104985. DOI:10.1016/j.phrs.2020.104985. |
[51] | LIU G,LIANG L,YU G,et al. Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats[J]. Int J Biol Macromol,2018,115:711-717. DOI:10.1016/j.ijbiomac.2018.04.127. |
[52] | NIE Q,CHEN H,HU J,et al. Arabinoxylan attenuates type 2 diabetes by improvement of carbohydrate,lipid,and amino acid metabolism[J]. Mol Nutr Food Res,2018,62(20):e1800222. DOI:10.1002/mnfr.201800222. |
[53] | ZHAO C,YANG C F,LIU B,et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits[J]. Trends Food Sci Technol,2018,72:1-12. DOI:10.1016/j.tifs.2017.12.001. |
[54] | LIU Y Y,WANG C R,LI J S,et al. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition[J]. FASEB J,2020,34(1):1065-1078. DOI:10.1096/fj.201901943RR. |
[55] | LIU Y M,LIU W,LI J,et al. A polysaccharide extracted from Astragalus membranaceus residue improves cognitive dysfunction by altering gut microbiota in diabetic mice[J]. Carbohydr Polym,2019,205:500-512. DOI:10.1016/j.carbpol.2018.10.041. |
[56] | YAO Y,YAN L,CHEN H,et al. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids[J]. Phytomedicine,2020,77:153268. DOI:10.1016/j.phymed.2020.153268. |
[57] | GU W,WANG Y,ZENG L,et al. Polysaccharides from Polygonatum kingianum improve glucose and lipid metabolism in rats fed a high fat diet[J]. Biomed Pharmacother,2020,125:109910. DOI:10.1016/j.biopha.2020.109910. |
[58] | ZHU K X,FAN H F,ZENG S J,et al. Polysaccharide from Artocarpus heterophyllus Lam.(jackfruit) pulp modulates gut microbiota composition and improves short-chain fatty acids production[J]. Food Chem,2021,364:130434. DOI:10.1016/j.foodchem.2021.130434. |
[59] | PANG B,ZHAO L H,ZHOU Q,et al. Application of berberine on treating type 2 diabetes mellitus[J]. Int J Endocrinol,2015,2015:905749. DOI:10.1155/2015/905749. |
[60] | CUI H X,ZHANG L S,LUO Y,et al. A purified anthraquinone-glycoside preparation from rhubarb ameliorates type 2 diabetes mellitus by modulating the gut microbiota and reducing inflammation[J]. Front Microbiol,2019,10:1423. DOI:10.3389/fmicb.2019.01423. |
[61] | XU X,GAO Z,YANG F,et al. Antidiabetic effects of Gegen Qinlian decoction via the gut microbiota are attributable to its key ingredient berberine[J]. Genomics Proteomics Bioinformatics,2020,18(6):721-736. DOI:10.1016/j.gpb.2019.09.007. |
[62] | XIAO S,LIU C,CHEN M,et al. Scutellariae Radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites[J]. Appl Microbiol Biotechnol,2020,104(1):303-317. DOI:10.1007/s00253-019-10174-w. |
[63] | TONG X L,XU J,LIAN F M,et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula:a multicenter,randomized,open label clinical trial[J]. mBio,2018,9(3):e2392-2317. DOI:10.1128/mBio.02392-17. |
[64] | CHEN M Y,LIAO Z Q,LU B Y,et al. Huang-Lian-Jie-du-decoction ameliorates hyperglycemia and insulin resistant in association with gut microbiota modulation[J]. Front Microbiol,2018,9:2380. DOI:10.3389/fmicb.2018.02380. |
[65] | WEI X Y,TAO J H,XIAO S W,et al. Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota[J]. Sci Rep,2018,8(1):3685. DOI:10.1038/s41598-018-22094-2. |
[66] | CAO Y,YAO G W,SHENG Y Y,et al. JinQi Jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice[J]. J Diabetes Res,2019,2019:1872134. DOI:10.1155/2019/1872134. |
[67] | LIU Y,WANG Y,NI Y Q,et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention[J]. Cell Metab,2020,31(1):77-91.e5. DOI:10.1016/j.cmet.2019.11.001. |
[68] | LE CHATELIER E,NIELSEN T,QIN J J,et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature,2013,500(7464):541-546. DOI:10.1038/nature12506. |
[69] | STANISLAWSKI M A,DABELEA D,LANGE L A,et al. Gut microbiota phenotypes of obesity[J]. NPJ Biofilms Microbiomes,2019,5(1):18. DOI:10.1038/s41522-019-0091-8. |
[70] | MUELLER N T,DIFFERDING M K,ZHANG M,et al. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids:a randomized trial[J]. Diabetes Care,2021,44(7):1462-1471. DOI:10.2337/dc20-2257. |
[71] | HENNING S M,YANG J P,HSU M,et al. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice[J]. Eur J Nutr,2018,57(8):2759-2769. DOI:10.1007/s00394-017-1542-8. |
[72] | SANG T T,GUO C J,GUO D D,et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation[J]. Carbohydr Polym,2021,256:117594. DOI:10.1016/j.carbpol.2020.117594. |
[73] | WANG K,BAO L,ZHOU N,et al. Structural modification of natural product ganomycin I leading to discovery of a α-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction in vivo[J]. J Med Chem,2018,61(8):3609-3625. DOI:10.1021/acs.jmedchem.8b00107. |
[74] | WANG L,ZENG B H,LIU Z W,et al. Green tea polyphenols modulate colonic microbiota diversity and lipid metabolism in high-fat diet treated HFA mice[J]. J Food Sci,2018,83(3):864-873. DOI:10.1111/1750-3841.14058. |
[75] | DING Y N,SONG Z H,LI H,et al. Honokiol ameliorates high-fat-diet-induced obesity of different sexes of mice by modulating the composition of the gut microbiota[J]. Front Immunol,2019,10:2800. DOI:10.3389/fimmu.2019.02800. |
[76] | LU Y Y,FAN C N,LI P,et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota[J]. Sci Rep,2016,6:37589. DOI:10.1038/srep37589. |
[77] | ZHANG S M,ZHAO J W,XIE F,et al. Dietary fiber-derived short-chain fatty acids:a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease[J]. Obes Rev,2021,22(11):e13316. DOI:10.1111/obr.13316. |
[78] | HONG Y,SHENG L L,ZHONG J,et al. Desulfovibrio vulgaris,a potent acetic acid-producing bacterium,attenuates nonalcoholic fatty liver disease in mice[J]. Gut Microbes,2021,13(1):1-20. DOI:10.1080/19490976.2021.1930874. |
[79] | QIAO S S,BAO L,WANG K,et al. Activation of a specific gut Bacteroides-folate-liver axis benefits for the alleviation of nonalcoholic hepatic steatosis[J]. Cell Rep,2020,32(6):108005. DOI:10.1016/j.celrep.2020.108005. |
[1] | 王旭, 魏戌, 朱立国, 冯天笑, 王志鹏, 师彬. 医工结合的中医手法治疗脊柱退行性疾病疗效机制研究:思路与前景[J]. 中国全科医学, 2023, 26(33): 4118-4124. |
[2] | 辛功恺, 丛欣, 袁磊, 程悦彤, 倪翠萍, 张巍巍, 張平平, 刘宇. 失智症老年人综合评估工具的研究进展[J]. 中国全科医学, 2023, 26(33): 4103-4109. |
[3] | 张思宇, 周郁秋, 杜晓慧, 王正君. 精神病未治期及其早期干预的研究进展[J]. 中国全科医学, 2023, 26(33): 4110-4117. |
[4] | 孟江涛, 杨思宇, 孙蕾, 雷瑞宁, 赵晓霞. 弥散张量成像联合运动诱发电位评估脑梗死偏瘫患者运动功能预后价值的研究进展[J]. 中国全科医学, 2023, 26(32): 4098-4102. |
[5] | 王佳欣, 赵亚利. 国内外医疗团队合作评估工具系统综述[J]. 中国全科医学, 2023, 26(31): 3951-3962. |
[6] | 卫梦雨, 王佳佳, 张莹莹, 李春阳, 李建生. 阻塞性睡眠呼吸暂停患者报告结局测评工具研究现状分析[J]. 中国全科医学, 2023, 26(30): 3725-3733. |
[7] | 苑喜微, 南月敏. 线粒体融合蛋白2的结构和功能及其在肝脏疾病中作用机制的研究进展[J]. 中国全科医学, 2023, 26(30): 3841-3846. |
[8] | 肖雨倩, 白艳杰, 王岩, 陈淑颖, 陈丽敏, 孙可心, 万俊. 线粒体转移在脑卒中后认知障碍中的研究进展[J]. 中国全科医学, 2023, 26(30): 3833-3840. |
[9] | 刘煜, 岳婷, 杨东宇, 赵中亭, 杨吉勃, 朱田田. 自噬在类风湿关节炎发病机制中的研究进展[J]. 中国全科医学, 2023, 26(29): 3710-3714. |
[10] | 张振东, 蔡斌, 王宏伟, 乔增勇. 肠道菌群及其代谢产物苯乙酰谷氨酰胺在慢性心力衰竭患者中的变化研究[J]. 中国全科医学, 2023, 26(29): 3665-3673. |
[11] | 蒲瑜, 张吉翔, 董卫国. 铁死亡与炎症性肠病的研究进展[J]. 中国全科医学, 2023, 26(29): 3698-3703. |
[12] | 肖礼其, 杨莉, 崔赛仙, 张娅袁, 王玉路, 何燕. 高盐诱导肠道菌群紊乱调节盐敏感性血压的机制研究[J]. 中国全科医学, 2023, 26(29): 3704-3709. |
[13] | 任延峰, 刘世蒙, 陶颖, 陈英耀. 抑郁症患者药物治疗偏好的系统综述:基于离散选择实验和优劣尺度法[J]. 中国全科医学, 2023, 26(28): 3559-3564. |
[14] | 梁雪梅, 王睿, 赵玉环, 徐天娇, 王伟, 孙伟东. 经颅低水平激光:一种治疗抑郁症的新方法[J]. 中国全科医学, 2023, 26(27): 3335-3341. |
[15] | 陈晓芬, 陈钰涵, 马娟. 炎症性肠病新型治疗方法的研究进展[J]. 中国全科医学, 2023, 26(27): 3349-3354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||