中国全科医学 ›› 2021, Vol. 24 ›› Issue (14): 1841-1847.DOI: 10.12114/j.issn.1007-9572.2021.00.475

所属专题: 内分泌代谢性疾病最新文章合集 老年问题最新文章合集

• 专题研究 • 上一篇    下一篇

老年2型糖尿病患者糖化血红蛋白预测模型的建立与评分表的开发

杨恒博1,袁蓉2,石霞2,3,吴行伟2,3*   

  1. 1.610213四川省成都市第二人民医院 2.610072四川省成都市,四川省医学科学院 四川省人民医院 3.610054四川省成都市,电子科技大学医学院 个体化药物治疗四川省重点实验室
    *通信作者:吴行伟,主管药师;E-mail:wuxw1988@126.com
  • 出版日期:2021-05-15 发布日期:2021-05-15
  • 基金资助:
    四川省卫生健康科研课题普及项目(19PJ262)

Establishment of Predictive Model and Development of Scale for HbA1c in Elderly Type 2 Diabetes Patients Based on Logistic Regression 

YANG Hengbo1,YUAN Rong2,SHI Xia2,3,WU Xingwei2,3*   

  1. 1.Chengdu Second People's Hospital,Chengdu 610213,China
    2.Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital,Chengdu 610072,China
    3.School of Medicine,University of Electronic Science and Technology of China/Personalized Drug Therapy Key Laboratory of Sichuan Province,Chengdu 610054,China
    *Corresponding author:WU Xingwei,Pharmacist in charge;E-mail:wuxw1988@126.com
  • Published:2021-05-15 Online:2021-05-15

摘要: 背景 糖化血红蛋白(HbA1c)控制达标可降低老年2型糖尿病患者的并发症发生风险,维持良好的HbA1c是管理老年2型糖尿病的重要手段,但近年来有越来越多的研究表明老年2型糖尿病患者HbA1c达标率普遍较低,而HbA1c预测模型可以辅助降低老年糖尿病患者HbA1c控制不达标的风险。目的 寻找影响老年2型糖尿病患者HbA1c控制达标的因素,建立HbA1c达标预测模型及评分表,为老年2型糖尿病患者的血糖管理提供一种可靠工具。方法 采用面对面的问卷调查方式收集2018年3月—2019年12月在四川省人民医院内分泌科就诊的老年2型糖尿病患者的性别、年龄、在岗情况、民族、婚姻状况、文化程度、体型、中心性肥胖、糖尿病家族史、前次HbA1c、糖尿病病程、空腹血糖监测情况、本次HbA1c检查结果、空腹血糖、现阶段治疗方案维持时间、服药依从性情况、使用口服药物种类、是否使用胰岛素、降糖药物日花费、是否高血压、是否高脂血症、是否合并糖尿病并发症、每日运动时间、睡眠情况、是否合理控制饮食、抑郁状态等信息,并根据患者本次HbA1c检查结果分为HbA1c达标组(224例)及HbA1c未达标组(259例)。使用单因素Logistic分析及Lasso-Logistic回归分析筛选变量,以HbA1c为结局指标建立Logistic回归模型与评分表。采用Bootstrap方法对模型进行内部验证,使用受试者工作特征曲线(ROC曲线)和校准图评价模型的区分度和校准度、使用评分-发生概率图验证评分表性能,并找出评分表的最佳切点。结果 两组老年2型糖尿病患者年龄、中心性肥胖、前次HbA1c、糖尿病病程、空腹血糖、服药依从性、使用口服药物种类、使用胰岛素情况、糖尿病并发症情况、每日运动时间、合理控制饮食情况、抑郁状态比较,差异均有统计学意义(P<0.05)。单因素Logistic回归分析结果显示,年龄、前次HbA1c、糖尿病病程、空腹血糖、服药依从性、使用胰岛素情况、糖尿病并发症情况、每日运动时间、合理控制饮食情况、中心性肥胖情况是HbA1c达标的影响因素(P<0.05);Lasso-Logistic回归分析结果显示,前次HbA1c、糖尿病病程、空腹血糖、服药依从性、使用胰岛素情况、每日运动时间、合理控制饮食情况是老年2型糖尿病患者HbA1c达标的影响因素(P<0.05)。根据Lasso-Logistic分析结果构建的模型回归方程为Logit(P)=-3.89+1.72×〔前次HbA1c(>7%)〕 +0.97×〔糖尿病病程(2~10年)〕 +1.41×〔糖尿病病程(>10年)〕+1.51×〔空腹血糖(≥7 mmol)〕+1.02×〔服药依从性(一般或差)〕+0.85×〔是否使用胰岛素(是)〕+0.58×〔每日运动时间(>0~0.5 h)〕 +1.21×〔每日运动时间(无运动)〕+1.09×〔是否合理控制饮食(否)〕(满足〔〕中的条件为1,不满足为0)。模型进行内部验证结果显示,模型的校准曲线与标准线接近,模型的ROC曲线下面积(AUC)为0.86〔95%CI(0.83,0.89)〕。将Lasso-Logistic回归方程中自变量的回归系数四舍五入、取整为评分表赋值,形成总分为9分的HbA1c预测评分表,0~9分对应的HbA1c控制不达标发生概率为3.7%~100.0%,最大约登指数为0.56时,评分表切点为5分,该分值下评分表的灵敏度为79.54%、特异度为76.79%、准确率为78.26%。结论 联合患者前次HbA1c、糖尿病病程、是否使用胰岛素、是否定量合理进食、服药依从性、每日运动时间与空腹血糖构建的预测评分表可对老年2型糖尿病患者未来的HbA1c达标情况做出有效预测,有一定临床应用和推广价值。

关键词: 糖尿病, 2型;老年人;糖化血红蛋白;预测模型;并发症

Abstract: Background Achieving hemoglobin control can reduce the risk of complications of type 2 diabetes among elderly patients and the hemoglobin management is crucial in the daily management of type 2 diabetes.However,there has been increasingly evidence shows that the achieving rate of hemoglobin-control among elderly patients with type 2 diabetes are generally poor.However,the risk prediction models of hemoglobin can be generally used to predict high level hemoglobin risk for individual patients.Objective To establish target predictive model and scale of HbA1c by exploring influencing factors of hemoglobin-control in elderly patients with type 2 diabetes,in order to provide a kind of versatile and reliable tool for diabetes management.Methods The basic information and related laboratory indexes of 483 elderly patients with type 2 diabetes referred to the endocrinology department,Sichuan Provincial People's Hospital from March 2018 to December 2019 were collected by face-to-face questionnaire survey,including gender,age,occupation,nationality,marital status,educational level,body size,family history of diabetes,central obesity comparison,previous HbA1c values,the HbA1c test result,the duration of diabetes,fasting blood sugar monitoring situation,fasting blood glucose values,the present stage treatment,medication compliance,type of oral medication,whether to use insulin,glucose-lowering drugs daily cost,high blood pressure,high cholesterol,whether merger diabetes complications,daily exercise time,quality of sleep,diet control,and depression.According to the results of HbA1c examination,the patients were divided into:HbA1c up to standard group (224 cases) and HbA1c not up to standard group(259 cases).Univariate and multivariate Lasso-Logistic regression were used for variable selection,and hemoglobin values were used as independent variables to build the predictive models and rating scales.Bootstrap method were used for internal validity analysis of the prediction models.The sensitivity,specificity as well as the area under the receiver operating characteristic(ROC)curve(AUC)was evaluated for predict accuracy.The score-occurrence probability graph was used to verify the performance of the rating scales and the best out of cut-points was determined.Results The statistically significant differences was found in age,central obesity comparison,previous HbA1c value,duration of diabetes,fasting blood glucose,medication compliance,type of oral medication,whether to use insulin,diabetes complications,daily exercise time,diet control,and depression between normal hemoglobin value and high hemoglobin value between the two group(P<0.05).Univariate Logistic regression analysis revealed that age,central obesity comparison,previous HbA1c value,duration of diabetes,fasting blood glucose,medication compliance,insulin use,daily exercise time and diet control was significantly correlated with hemoglobin-control(P<0.05).Lasso-Logistic regression analysis revealed that age,previous HbA1c value,duration of diabetes,fasting blood glucose,medication compliance,insulin use,daily exercise time and diet control was significantly correlated with hemoglobin-control(P<0.05).According to the result of Lasso-Logistic analysis,the logistic regression model is logit(P)=3.89+1.72×〔previous HbA1c(> 7%)〕+0.97×〔(2 years to 10 years)duration of diabetes〕 + 1.41×〔diabetes duration(>10 years)〕+1.51×〔fasting glucose values(≥7mmol)〕 +1.02×〔medication compliance(or poor)] + 0.85×〔whether to use insulin(yes)〕 + 0.58×〔daily movement time(>0~0.5 h)〕+1.21×〔Daily exercise time(no exercise)]+1.09×〔diet controlled(no)〕 (if the condition in 〔〕 is satisfied,it is 1;if it is not satisfied,it is 0).The discriminatory ability of this model and the results of internal validation showed that the model performed well.The area under the ROC curve was 0.86〔95%CI(0.83,0.89)〕.To derive a simple-to-compute risk score,regression coefficients were converted to weighted scores by dividing each regression coefficient by rounding to the nearest integer,then,a HbA1c rating score with a maximum score of 9 was obtained,ratings increased from 0 to 9 with increasing probability of high level hemoglobin risk.When the cut-off value was set at 0.56 according to the max value of the Youden index,the cut point of the rating table is 5 points,the sensitivity was 79.54%,specificity was 76.79%,and accuracy was equaled to 78.26%.Conclusion By applying hemoglobin scoring model,clinicians can predict which elderly patients with type 2 diabetes may have a high risk of hemoglobin-control and thus help patients make the right decisions,so this scoring model has clinical application and promotion value.

Key words: Diabetes mellitus, type 2;Aged;Hemoglobin control;Predicting model;Complications